论文部分内容阅读
提出了一种基于小波包分析(WPA)和支持向量机(SVM)的异步电机转子断条故障诊断方法。针对异步电机转子断条故障时定子电流出现的边频分量(1+2s)f进行小波包分析,提取动态条件下各频带能量作为故障特征向量,削弱了负载变化及噪声对诊断准确性的影响。采用多个最小二乘支持向量机组成故障分类器,兼顾了训练误差和计算效率,将故障特征向量输入支持向量机进行训练,从而实现在小样本情况下转子断条故障的在线识别。试验结果表明:基于小波包分析提取的故障特征明显,由WPA和SVM构成的诊断系统,具有良好的分类能力和泛化能力,