Thiele型连分式相关论文
图像去噪是图像处理和计算机视觉中的一个基础课题。图像去噪的根本目的是从受污染图像中恢复不含噪声的原始图像同时尽可能多的保......
学位
随着科学技术的发展,非线性数学具有强大的生命力.有理插值与逼近方法作为非线性数学的主要分支之一,已在实际应用中显示出巨大优......
目前,科学实践中存在大量的非线性问题。有理函数插值因有着灵活性好和逼近精度高的优点,成为非线性问题解决方法的研究热点之一,......
建立在复向量Samelson逆(也称广义逆)基础上的向量有理插值(GVRI)由Wynn(1963)首先提出,并由Graves-Morris等(1983)在实用背景(如......
在解决反插值问题时,本文首次利用Thiele型连分式有理插值,得到了两种十分有效的方法:函数插值的有理反插法和反函数的有理插值法,......
在插值区间的子区间上基于Thiele型连分式构造插值函数,将连分式插值函数嵌入到重心有理插值之中,并结合预给极点的信息构造混合有......
图像处理的最终目标是能够有效地传递视觉信息,达到延伸人类视觉器官的功能。因此处理的结果图像不仅要能反映图像的客观性质,还要考......
本文针对有理插值问题的起源与发展,作了简要说明。介绍了有理插值问题的提法和有理插值解的存在唯一性定理,列举了一些有理函数插值......