laplacian特征映射相关论文
利用DNA芯片,可以对成千上万个基因在不同组织的表达情况进行跟踪与监测,它不仅有助于肿瘤组织的鉴别分类和新亚型发现,而且为肿瘤分......
传统的Laplacian特征映射是基于欧氏距离的近邻数据点的保持,近邻的高维数据点映射到内在低维空间后仍为近邻点,高维数据点的近邻......
针对流形学习算法普遍存在对噪声敏感的问题,提出一种克服噪声的鲁棒Laplacian特征映射算法。该算法从Laplacian特征映射出发,在降......
基于哈希编码的算法,由于其高效性,已经成为海量数据高维特征最近邻搜索的研究热点。目前存在的普遍问题是,当哈希编码长度较低时,......
针对化工过程数据的非线性和动态性分布特征,引入Laplacian特征映射(LE),提出了一种基于改进最大方差展开(MVU)的特征提取算法。在改进算......
Laplacian特征映射是基于欧氏距离的近邻数据点的保持,高维数据点的近邻选取最终将影响全局低维坐标.本文将鉴别信息引入到近邻数......
针对传统被动毫米波金属目标识别方法中特征提取、选择的缺点,采用Laplacian特征映射流形学习算法发现了金属目标回波信号短时傅立......
为了保留网络结构信息和节点特征信息,结合图卷积神经网络(GCN)和自编码器(AE),提出可扩展的半监督深度网络表示学习模型(Semi-GCN......
对点目标的图像变化检测,现有的变化检测技术结果往往存在着虚警过大的问题。通过深入分析多个传统的变化检测方法的特点,利用各方......
谱聚类能发现数据的非线性低秩结构,在模式识别等领域应用广泛.谱聚类与图模型、流形嵌入、积分算子理论等紧密相关,存在着潜在的......
最大方差展开(maximum variance unfolding,MVU)是在流形局部等距概念基础上提出的一种新的非线性维数约减算法,能有效学习出隐含......