论文部分内容阅读
人类生活、生产、实践的各个领域,都存在优化问题,其中,决策优化问题更是近年来研究的重点。随着各个领域的迅速发展,具有递阶结构的双层规划问题应运而生,然而双层规划问题却已经被证明是NP-难问题了。本文在凸性假设(即假设目标函数为严格凸函数,约束集为凸集)条件下,研究了双层多目标规划问题中上下层都是多目标的且为非线性的模型的若干算法,目的是为决策者提供更多的有效解,让决策者有更多的选择。本文的具体工作如下: 一、介绍了研究双层多目标规划所需要的基本知识,包括凸集、凸函数的基本概念,极值的一些基本定理,线性规划、非线性规划的模型及其基本算法,为后面的研究打好基础。 二、介绍了单层多目标规划的一些知识,包括基本模型、基本算法,并给出了实例说明算法是有效的。因为在双层规划的研究中有一个重要的研究途径就是化双层规划为单层规划,所以,掌握单层多目标规划的算法是基础。 三、根据上层决策变量x在下层决策中所起的作用,将双层多目标规划分为两类,一类是起参数作用的模型,对于这类模型基于把双层规划转化为与其等价的单层规划的这一思想,用线性加权法、基于平方加权的理想点法、改进的惩罚函数法、几何加权法这四种算法将非线性的双层多目标规划转化成为与其等价的非线性单层多目标规划进行求解;另一类是起约束作用的模型,这类模型的解决方法是将下层问题看成独立可决策的问题,独立决策后再将满足约束条件的解带入上层问题从而进行求解。并对所提的算法都给出了实例,说明了算法的有效性。 四、研究了两种特殊的非线性的双层多目标规划问题的算法,一种是当约束条件为等式时,用拉格朗日乘子法来求解;另一种是当下层为线性多目标规划,上层为非线性多目标规划时,用极点法求得下层问题的最优解,再带入上层问题从而求得原问题的有效解。