论文部分内容阅读
随着微纳米技术的进步和人们对微创医疗、微制造系统等方面日益增长的需求,微机器人技术得到了快速发展。螺旋结构磁微机器人在微尺度范围内相对于梯度场驱动磁微机器人和摆动前进磁微机器人具有驱动力大和易于控制的特点,是微尺度机器人的一种重要结构形式。当前国内外研究者对于螺旋磁微机器人的研究主要集中在毫米甚至厘米尺度中,而对于亚毫米尺寸范围内的螺旋磁微机器人的研究较少。不同的尺度范围内,各参数变化对其运动性能的影响规律存在差异,因此在亚毫米尺度下对微机器人的研究具有重要研究意义。本文以螺旋推进泳动磁微机器人为研究对象,建立微机器人在液体中泳动的动力学模型,设计亥姆霍兹线圈驱动微机器人运动,并在此基础上提出运动控制策略。构建螺旋推进泳动磁微机器人系统,进行实验分析和验证。首先,建立螺旋推进泳动磁微机器人的动力学模型。在低雷诺数环境的前提下,基于阻力理论得出了螺旋磁微机器人泳动的动力学模型。在该模型的基础上研究螺旋半径、长度、螺距等参数对机器人运动速度和效率的影响规律,得出微机器人性能最佳时的参数取值。分析磁场能够产生的最大力矩,引入失步频率,得到螺旋磁微机器人所能达到的最大速度与结构参数之间的关系曲线。进一步提出两端分布的双螺旋磁微机器人结构,并对其进行分析。其次,设计螺旋推进泳动磁微机器人磁驱动模块。分析亥姆霍兹线圈的工作原理,并利用COMSOL软件进行仿真,得出线圈的磁场分布特性。基于仿真结果,设计满足实验要求的三对亥姆霍兹线圈。利用线圈磁场在空间中的旋转控制微机器人沿任意方向运动。对设计的亥姆霍兹线圈所产生的磁场进行实验检测。最后,进行螺旋推进泳动磁微机器人的实验研究。在磁驱动模块的基础上构建螺旋磁微机器人实验系统,并加工制作多种尺寸的单螺旋磁微机器人。在不同外界环境和不同微机器人几何参数条件下进行机器人运动性能实验。利用实验得到各参数对运动性能的影响规律,并对理论分析结果进行验证。通过实验比较双螺旋和单螺旋磁微机器人的运动性能,并验证双螺旋磁微机器人的螺旋可叠加性。进行螺旋磁微机器人运动控制实验,验证微机器人运动的可重复性。