【摘 要】
:
近年来,随着航天事业和空间技术的迅猛发展,单颗卫星已无法完成日渐复杂的航天任务,小卫星编队飞行由于具有成本低、可靠性高,以及灵活性强等优点,已成为一种引领航天未来发展趋势的空间技术。由于小型航天器所携带的通讯器件性能有限,同时执行任务时经常星间距离过远,因此星间进行信息交互通讯时不可避免的存在带宽不足等现象。本课题将针对通讯资源受限情形下的小型航天器编队,深入研究对应的姿态协同控制以及姿轨耦合一体
【基金项目】
:
国家自然科学基金项目“空间分布式SAR高精度干涉成像基础理论与关键技术”(项目编号:91438202),“有限网络通讯情形下滑模变结构控制方法研究”(项目编号:61473096),“空间翻滚目标的捕获策略及组合体的快速稳定控制”(项目编号:61690212);
论文部分内容阅读
近年来,随着航天事业和空间技术的迅猛发展,单颗卫星已无法完成日渐复杂的航天任务,小卫星编队飞行由于具有成本低、可靠性高,以及灵活性强等优点,已成为一种引领航天未来发展趋势的空间技术。由于小型航天器所携带的通讯器件性能有限,同时执行任务时经常星间距离过远,因此星间进行信息交互通讯时不可避免的存在带宽不足等现象。本课题将针对通讯资源受限情形下的小型航天器编队,深入研究对应的姿态协同控制以及姿轨耦合一体化控制等问题。针对小卫星编队中的星间相对状态估计问题,同时考虑相对轨道动力学方程中的非高斯输出测量噪声以及空间干扰力,提出一种拓展的滑模观测器方法对相对轨道的位置和速度信息进行精确估计。所提出的观测器算法不需要对轨道动力学方程进行线性化处理,因此保留了模型精度;可有效处理非高斯噪声,同时还能对空间干扰力进行精确估计。针对通讯资源受限下小卫星编队的姿态协同控制问题,为降低星间通信速率并节约计算资源,在考虑未知外部干扰和执行机构故障的情形下,提出了基于事件触发通信机制的编队航天器姿态协同容错控制策略。所设计的控制律能够补偿外部干扰、执行机构故障以及由于事件触发机制造成的状态误差的影响,并保证编队航天器姿态协同控制系统的渐近稳定性。针对存在星间通讯延迟下的小卫星编队的姿态协同控制问题,提出基于信号量化的星间数据传输策略,并采用终端滑模面技术和指数对数滑模面技术分别设计了对应的姿态协同控制器,保证了编队航天器姿态协同控制系统能在有限时间内达到期望的状态。在此基础上,为避免滑模控制器的抖振现象,基于切比雪夫神经元网络和反步控制理论设计了姿态协同控制策略,提高了编队航天器姿态协同控制的精度。针对通讯受限情形下的编队飞行航天器姿轨耦合控制问题,采用S E(3)理论对航天器编队飞行姿轨一体化动力学进行建模,并基于事件触发和信号量化的星间通讯策略设计了编队航天器姿轨一体化协同控制策略。所提出的控制算法在对事件触发和信号量化导致的状态误差补偿的同时,保证了整个航天器编队系统的姿态和轨道控制系统的稳定性。
其他文献
动静压气浮轴承以其摩擦小、精度高、无污染等优点,被广泛应用于高速/高精度加工领域。而以动静压气浮轴承为支撑系统的高速/高精度动静压气浮主轴作为超精密机床的核心零部件,是超精密机床实现超高精度加工的根本基础。然而,动静压气浮轴承还存在刚度较低,承载能力不高和容易失稳等问题,这些问题制约了动静压气浮主轴在高效、稳定、可控和工业化的超精密加工领域的应用。因此,围绕动静压气浮主轴动静态性能的理论分析及动静
基于掺杂氧化镁周期性极化铌酸锂(periodically poled lithium niobate crystal doped Mg O,PPMgLN)晶体的非线性频率变换的激光器能够满足军事光电对抗对于轻量化、结构紧凑的高峰值功率3~5μm中红外固体相干光源的迫切需求,但目前受晶体尺寸、损伤阈值以及晶体对长波长中红外激光吸收等因素的限制,PPMgLN中红外激光器的体积和峰值功率分别有待于缩小和
钠离子电池,因钠资源的储量丰富,分布广泛和成本低廉,已经成为极具潜力的下一代廉价高效储能电池体系。在众多的钠离子电池负极材料中,转化-合金型负极材料由于具有非常高的比容量,是高性能钠离子电池的理想负极材料。然而,因其嵌脱钠过程中发生的较大体积变化,极大降低了电池的循环稳定性。同时,钠离子较大的半径,使得该类材料表现出迟缓的电化学反应动力学,导致电池倍率性能变差。本文针对转化-合金型负极存在的缺点,
航天器是人类探索宇宙,执行空间任务的载体。航天器动力学与控制的研究有助于航天器在空间中平稳可靠的运行,在航天技术发展中起到关键的作用。其中,航天器交会的成功是许多航天任务的先决条件,姿态控制系统直接影响着航天器在轨运行的稳定。随着空间任务的多样化,航天器面临极端的空间环境、日益复杂的结构特性、输入受限、时滞以及时变特征等问题。对这些问题认识的不足会导致航天器控制性能下降或失效。因此,基于这些问题的
在金属塑性变形过程中,塑性变形区的速度场分布可以揭示金属的塑性流动规律,对塑性加工过程的工艺流程制定和参数优化有着重要的理论指导意义。而众多传统解析法所确定的速度场通常是具有不唯一性的动可容场,制约了金属塑性流动理论在速度场求解中的应用。鉴于此,本文研究了基于晶体学物理背景的转动率连续理论所对应的速度场特点。以“扩展滑移”机制发生塑性流动的刚塑性体内部的滑移晶面与其最大剪应力面保持平行,此时转动率
光纤传感技术经历了30年的高速发展,已经广泛应用于现代社会的各个领域,其中应用于惯性导航的光纤陀螺仪和水下声信号探测的光纤水听器是高性能光纤传感器的典型代表,这两种传感器的结构中光纤被绕制成环以增加探测灵敏度和减小体积。但是,受绕制工艺和材料等因素的限制,光纤环的应变、温度和双折射的不均匀分布会引入光学非互易性,最终限制了光纤环的工作性能。因此,研究不同工艺和材料光纤环的应变、温度和双折射等参量的
热防护结构设计是飞行器热管理的关键,是研制高超声速飞行器过程中的主要瓶颈。当飞机器高速飞行时,飞行器表面的温度会大幅度升高。同时机体内部的电子和电气设备要求工作温度不超过85℃,以保障飞机内部设备的正常工作。如此高的温差将给飞机热防护带来严峻挑战,现有的热防护结构设计准则与隔热材料已不能满足可重复使用设计要求,因此研制高性能热防护结构变得极为迫切。针对热防护结构的需求,对轻质防隔热一体化结构的强度
强化学习是机器学习的一个重要分支,是一种从与周围环境交互中学习的计算方法。强化学习关注未知环境中智能体实现目标的顺序决策,广泛应用于自然语言处理,机器人控制等领域。区别于传统的机器学习算法,强化学习智能体在与环境的交互过程中获取样本并实现策略学习,同时,智能体需要为交互付出时间和空间的开销。特别是应用于控制系统的强化学习算法,过多的交互会使环境发生改变甚至给智能体和环境带来损伤。因此,能够用最少的
固态盘以其体积小、高带宽、低延迟、低功耗和抗震性等优点逐渐取代机械硬盘成为主流的存储。固态盘由于存储介质是闪存,因而它拥有闪存的所有特点,比如:读写不对称、写前擦除和擦除次数有限特点。早些年,数据管理系统中的外存索引和算法主要是针对磁盘的I/O特性进行设计和优化,很多在闪存介质上已经不再适用。因而,近些年基于闪存特性的索引和外存优化算法逐渐出现,但是它们都是只基于闪存介质的特点。如果把固态盘看作一
微米游动机器人的尺寸在几微米至几百微米之间,能在液体环境中将磁能、光能、声能或其他形式的能量转化为机械运动。由于具有较高的操控精度和受限环境下的可控性,微米机器人在生物医学、环境处理等领域具有广阔的应用前景,如可用于靶向癌症治疗、微创外科手术、细胞操作、重金属检测、污染物清除等。受尺度限制,微米机器人的个体能力有限、效率较低,很难直接满足实际应用需要。受到自然界生物群体现象的启发,微米机器人的群体