早期临床试验中的若干贝叶斯自适应设计

来源 :华东师范大学 | 被引量 : 0次 | 上传用户:lhawk
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Traditional(frequentist)trial design may use information from previous studies only at the design stage.At the analysis stage,the data from previous studies is not part of,but considered as a complement to,the formal analysis.In contrast,the Bayesian trial design considers the prior information and the trial results as part of a continuous data stream.Inferences are being updated when the new data becomes available.These advances have resulted in an enormous increase in the popularity of Bayesian design.In this thesis,we proposed the three Bayesian adaptive designs for various early phase clinical trials.They are i)Bayesian basket trial design accounting for multiple cutoffs,ii)Bayesian adaptive design for biosimilar trials with time-to-event endpoints,and iii)Bayesian design for phase I/II cancer vaccine trials.Basket trial design enrolls patients with different cancer types but the same genetic mutation or biomarker to evaluate the treatment effect of targeted therapy.However,the explicit biomarker sometimes may not be clearly identified.In this thesis,we proposed a new Bayesian basket trial design to account for multiple cutoffs of ambiguous biomarkers and select the optimal cutoff window to maximize the benefit subpopulation.A two-stage design is proposed for the estimation.Secondly,we proposed threshold calibration and sample size determination to facilitate the design.Extensive simulations are conducted to demonstrate the operating characteristics of the two estimation methods in terms of the probability of correct selection of optimal cutoff window and probability of efficacy.We show the application of the proposed Bayesian adaptive basket trial design to explore the treatment effect of therapies with potential biomarker expression levels under three cancer types.A biosimilar drug is a biological product that is highly similar to and at the same time has no clinically meaningful difference from a licensed product in terms of safety,purity,and potency.Biosimilar study design is essential to demonstrate the equivalence between biosimilar drug and reference product.However,existing designs and assessment methods are primarily based on binary and continuous endpoints.We proposed a Bayesian adaptive design for biosimilarity trials with time-to-event endpoint.The features of the proposed design are twofold.First,we employ the calibrated power prior to precisely borrow relevant information from historical data for the reference drug.Second,we proposed a two-stage procedure using the Bayesian biosimilarity index to allow early stop and improve the efficiency.Extensive simulations are conducted to demonstrate the operating characteristics of the proposed method in contrast with some naive method.Sensitivity analysis and extension with respect to the assumptions are presented.We validate the design to a biosimilar trial for treating non-small-cell lung cancer.Therapeutic cancer vaccines are an active immunotherapy whose primary aim is to induce or enhance an adaptive antitumor immunity,such as T cells against tumor cells.The primary objective of the typical phase I designs for cytotoxic drugs are to identify the maximum tolerable dose under the assumption that the efficacy and toxicity monotonically increase with dose.As a result,typical dose finding designs are not suitable for therapeutic cancer vaccines.However,existing designs rely on the prespecified correlation between the toxicity and efficacy endpoints.We proposed a Bayesian design for cancer vaccine trial that incorporates the correlation information at each dose level.We demonstrate the proposed design by numerical study.In summary,the proposed Bayesian adaptive designs are well motivated by practical needs and shown to be more efficient than some existing designs from different perspectives.They can be further explored and extended to meet more challenges.
其他文献
在中国,地表水质量的迅速恶化已引起社会各界的广泛关注。为满足人民群众对良好生态环境的需求,自2006年起,中央政府将水污染物减排量纳入官员晋升考核指标,以激励地方官员加强环境监管。但以减排激励为核心的环境政策能否改善省域交界地区的水体状况仍存在较多争议。此外由于河流具有流动性,污染物会随河流顺流而下,省域交界地区的水污染不仅影响当地的水污染程度,还影响到广袤下游区域,从而影响中国整体河流治理。因此
基于文本数据的混频预测模型是本文提出的新模型,是指模型中存在非结构化文本数据时,自变量之间时间统计频率一致(同频)或者时间统计频率不一致(混频)的情形。目的在于解决目前大数据时代下管理预测研究中不断受到重视的新颖问题,即预测研究中同时存在非结构化文本数据和混频数据的问题。随着移动互联网、云计算等信息技术的快速发展,数据采集的类型种类丰富,获取成本和传输成本也在不断降低,并且数据的形式不仅是时间统计
供应链运营中若上游制造商存在资金不足而无法顺利生产,则下游企业会面临供应不足甚至中断的风险,供应链往往不能执行最优决策,导致各方以及整体供应链利润的减少,特别当制造商生产不确定性或生产能力有限时,进一步制约供应链各方策略。企业为缓解资金瓶颈主要渠道有交易信用与银行等金融机构的授信融资,其中交易信用是指供应链上下游企业之间或企业与客户之间在产品或者服务过程中利用商业信用解决资金约束的方法,包括延期付
节能减排是缓解能源约束、减轻环境压力、保障经济安全、实现生态文明建设的重要战略举措。与此同时,高校是功能独特的重要组织,随着近年来高校体制改革的深入推进,高校后勤正沿着市场化、社会化、企业化的道路发展,众多高校运用现代企业制度建立了后勤集团,其具备现代企业的基本特征。高校节能管理工作不仅是高校正常运营的重要保障,而且也是后勤集团重要的管理任务,高校节能管理一直备受国家相关部委的高度重视和支持,特别
随着我国进入全民旅游时代,旅游产品质量问题日益凸显。信息技术的发展促使负面质量信息高效传播,对市场需求/游客消费行为产生的巨大冲击。与此同时,线上渠道在旅游业广泛应用,上、下游旅游企业间产生横向竞争。严峻的市场形势促使“低质低价”产品泛滥,负面质量信息进一步增加。引导旅游企业合理调整产品质量决策迫在眉睫。在此背景下,研究负面信息对旅游(企业产品)市场需求的影响作用,系统分析新业态下旅游企业的产品质
承销商作为一级资本市场最重要的中介机构,承担着通过收集有助于判定IPO公司内在价值的信息制定合理的IPO发行价格的重要责任。承销商的IPO定价效率不仅直接关系到承销商自身的IPO承销收入、声誉排名及其未来的承销市场份额,而且直接影响着IPO公司能否成功上市融资、公司的股权融资成本、其原始股东的投资回报以及资本市场中广大投资者的投资决策和经济收益。因此,研究承销商的IPO定价效率对整个资本市场健康有
学位
国家高新区是国家创新战略实施的重要空间载体,是高技术创新及其产业化的主战场,承载着国家创新驱动发展的重担。我国国家高新区经历了三十多年的发展历程,科技创新成绩斐然,引领国家经济创新发展的重要地位开始显现并逐步加强。国家高新区科技创新政策则加速了这一进程,为高新区明确创新方向、集聚创新资源、优化产业结构提供了充足的推动力。但随着全球技术变革、国家经济转型等外部挑战的日益严峻,以及资源环境约束加大、新
文章通过对北海供电局综合布线运维管理的现状进行深入研究,明确公司在信息通信综合布线运维管理方面存在的问题,有针对性地制订一套参考标杆企业、具备一定开创性理念、立足北海供电局实际的改善方案,旨在有效提升综合布线管理运维效能,降低信息通信系统运行风险,同时进一步提高过程管控与持续优化能力,为行业提供一套科学合理的综合布线智能化运维管理体系,提升企业智能化运维管理水平。
从2009年开始实施的绩效工资,作为我国教师绩效管理一项重要的薪酬制度设计,由于诸多原因,如今却成为困扰各级各类学校管理者的现实难题。中等职业学校在经历了前期将近十年的模仿、参照再到探索具有职业教育特色的实施方案后,其绩效工资制度同样也陷入了现实困境:绩效工资却无法充分发挥其激励“杠杆”作用、甚至出现“激励失灵”;中等职业学校教师在现有的绩效工资激励制度下缺乏工作积极性,只满足于一些短期性、显性化