【摘 要】
:
最近几年有机和无机杂化的钙钛矿太阳能电池已经引起世界广泛的关注,不仅因为钙钛矿太阳能电池转换效率发展迅猛,而且还由于钙钛矿材料低成本、制备工艺简单、可大面积制备。因此,探究低成本高效率的钙钛矿太阳能电池工艺是很有必要的。本论文研究内容主要分为两部分。第一部分是通过在活性层钙钛矿溶液中掺入氧化钼纳米颗粒而制备的倒置钙钛矿太阳能电池的转换效率得到改善,主要体现在开路电压的提升。在能量色散谱和高倍透射电
论文部分内容阅读
最近几年有机和无机杂化的钙钛矿太阳能电池已经引起世界广泛的关注,不仅因为钙钛矿太阳能电池转换效率发展迅猛,而且还由于钙钛矿材料低成本、制备工艺简单、可大面积制备。因此,探究低成本高效率的钙钛矿太阳能电池工艺是很有必要的。本论文研究内容主要分为两部分。第一部分是通过在活性层钙钛矿溶液中掺入氧化钼纳米颗粒而制备的倒置钙钛矿太阳能电池的转换效率得到改善,主要体现在开路电压的提升。在能量色散谱和高倍透射电镜中发现掺杂氧化钼纳米颗粒钙钛矿薄膜中的钼元素分布情况,钼元素主要分布在钙钛矿晶体的晶界处。此外,导电原子力显微镜观测显示出掺杂氧化钼纳米颗粒钙钛矿薄膜的表面电信号比无掺杂钙钛矿薄膜强。并且利用电容-频率谱和超快瞬态吸收光谱测试结果表明,掺杂氧化钼钙钛矿具有快速提取载流子能力。因此,我们制备的体异质结钙钛矿太阳能电池是通过在钙钛矿溶液中掺入无机纳米颗粒氧化钼,在钙钛矿活性层中形成的体异质结促进载流子的提取与分离,减少了电子空穴的复合,提升了器件的开路电压和光电转换效率。第二部分是关于P型宽带隙半导体氧化镍的制备及作为空穴传输层的应用研究。并且制备的氧化镍薄膜具有高的透射率、稳定的化学性质和可调的带隙。用真空蒸发沉积装置精确控制并经过热处理制备出超薄致密的氧化镍薄膜拥有更低光能量吸收损失。虽然已有研究采用导电性电子材料掺杂和界面工程改善了传统的器件性能,但是仍然缺乏材料本身基础设计的研究。我们通过对沉积蒸镀制备的氧化镍工艺的优化和改进,我们发现随着处理温度的升高,镍的化合价在发生变化,热处理有效的调控着Ni O、Ni OOH和Ni2O3的比例。紫外光电子能谱的结果表明氧化镍薄膜的功函数也在随着退火温度的增加而减小,这是因为氧化镍表面的化学成分变化和表面结构变化引起的,并导致空穴提取性能和氧化镍电阻率变化。总之,证实了采用热退火工艺制备的氧化镍薄膜具有高的透射率、稳定的化学性质和可调控的带隙,钙钛矿太阳能电池光电转换效率的增加和稳定性增强是基于氧化镍组分和功函数匹配的优化处理。
其他文献
为探索山西省南部旱地小麦增产、优质的最适栽培技术,明确不同播种方式与氮肥量的籽粒产量形成和氮素利用机理,于2018—2019年度在运城市闻喜县试验基地开展试验。试验采用裂区设计,以播种方式为主区,设宽幅精播、探墒沟播、常规条播3个处理,以施氮量为副区,设150 kg·hm-2、210 kg·hm-2 2个处理,研究播种方式与氮肥对旱地小麦群体构建、籽粒形成与灌浆、籽粒蛋白质含量的影响及其与生育期耗
我国花岗岩产业借助国内经济发展优势得到快速发展,花岗岩废料逐年增加,污染自然环境和危害人体健康。因此,花岗岩废料资源化利用成为亟待解决的迫切课题。花岗岩废料含有大量长石矿物作为自助熔剂,烧结过程中表面形成美观亮泽的釉面,可以作为廉价的微晶玻璃原料,制备花岗岩釉面建筑微晶玻璃。本文以花岗岩废料为主原料,通过物理和物理化学除铁,降低花岗岩废料中铁含量,采用烧结法制备釉面微晶玻璃;通过添加一定量粉煤灰,
自21世纪后,社会发展逐步进入知识经济时代,世界各国都纷纷加强了对科技研发、知识创新等方面的投入,高水平研究型大学作为创新知识和培养人才的主阵地日益受到各国的重视,建设世界一流大学已成为各国提升自身综合国力的战略选择,并逐步进入世界各国政府的政治议程和政策框架。2015年10月24日,随着国务院印发的《统筹推进世界一流大学和一流学科建设总体方案》,“双一流”战略规划被正式提出,当下,“双一流”政策
层状富镍三元材料Li Ni0.8Co0.1Mn0.1O2(NCM811)被认为是下一代高能量密度、大功率密度锂离子动力电池极具前景的正极材料之一。然而,该材料较差的倍率性能及循环稳定性严重制约了其实际应用。利用具有高比表面、高导电率和高速载流子迁移率的纳米碳材料对锂离子电池的电极材料进行改性,将为电极材料提供快速的电子和离子传输通道,极大提升电极材料的电化学性能。本论文通过将单元、多元商品化纳米碳
制造工艺指令描述和确定了制造工艺过程的相关要素,其直接影响产品的制造质量。为了有效预防产品制造质量问题和优化工艺设计,要求在工艺设计阶段,依据制造工艺指令开展工艺失效模式及影响分析(Process Failure Mode and Effects Analysis,PFMEA),以识别、评价、消除或控制潜在工艺设计失效模式。而规范的工艺指令是开展潜在工艺设计失效模式分析,确保产品制造质量的基础,同
随着工业和科技的快速发展,越来越多的研究人员致力于寻找具有高效功能性的纳米材料来解决日益严重的能源危机和环境污染等问题。碳基材料的迅速发展,其在催化、电池等方面的应用受到了广泛关注。以碳基材料为基底的催化剂在催化CO氧化、ORR反应以及水煤气反应等都有很好的催化效果;以石墨做负极的锂离子电池在电能存储方面有优异的表现,可以应用于移动设备和动力汽车中,为人们的生活提供了很多的便利。而在光电子器件和量
电子-分子碰撞广泛存在于辐射物理学,天体物理学,聚变科学,等离子体蚀刻等领域,是研究分子结构与动力学的重要手段之一。相关电子散射实验研究表明,低于电离阈值的低能电子可以占据分子的未占据轨道,形成电子分子共振态,导致DNA分子中单链或双链的断裂,阐明了低能电子可以诱导生物分子的辐射损伤,由此激发了若干有关低能电子与生物分子散射的实验和理论研究。大多数的实验和理论研究都只考虑气相中的孤立生物分子,而没
液相扩散系数是研究传质过程的重要基础数据,在化工、医学及环保等领域都有着广泛应用。温度是影响液相扩散系数的一个重要因素,为了准确、快捷地测量随温度变化的液相扩散系数,本文设计了一个温控范围广、精度高的半导体制冷装置,用于方便地调节扩散溶液的温度。基于该温度控制装置和液芯柱透镜对不同温度下β-丙氨酸以及维生素C水溶液的扩散系数进行了测量研究。论文的主要研究内容和结果如下:1、利用半导体制冷片和温控模
钴是一种重要的磁性材料,因其具有高强度、铁磁性、热稳定性等特点而广泛应用于电子、化工设备、耐热、原子能等行业。光谱发射率是表征材料热物性的一个重要参数,在工业生产、科学研究、航空航天等领域都发挥着重要的作用。在金属材料的研发和冶炼过程中,对材料的热物性参数和温度进行精确测量尤其重要,其测量精度将直接影响冶炼金属的性能和质量。但是光谱发射率并不是一个一成不变的值,它会受波长、温度、表面条件等因素的影
本论文基于两种能够发生激发态分子内质子转移的新型分子体系,采用密度泛函理论和含时密度泛函理论方法,使用B3LYP泛函以及TVZP基组对激发态分子内氢键动力学进行了深入的理论研究。首先,对氰基取代2-(2-羟苯基)苯并噻唑分子(HBT)的激发态分子内质子转移过程的影响进行了理论研究。计算发现在第一激发态的条件下,2-(2-羟苯基)苯并噻唑分子以及它的氰基取代衍生物的分子内氢键都明显的加强。然而,随着