【摘 要】
:
随着物联网的发展和5G网络兴起,DDos(Distributed Denial of Service)即分布式拒绝服务攻击,破坏力越来越大。从服务商的角度来看,DDos攻击具有两个特性,首先DDos攻击流量是巨大的,其次DDos攻击时间是短暂的。基于以上两种矛盾DDos防御云服务也运势而生,它主要处理服务提供商为DDos防御需求的资源成本高以及利用率低的矛盾,给出一种按需服务的解决方案,在成本和损
论文部分内容阅读
随着物联网的发展和5G网络兴起,DDos(Distributed Denial of Service)即分布式拒绝服务攻击,破坏力越来越大。从服务商的角度来看,DDos攻击具有两个特性,首先DDos攻击流量是巨大的,其次DDos攻击时间是短暂的。基于以上两种矛盾DDos防御云服务也运势而生,它主要处理服务提供商为DDos防御需求的资源成本高以及利用率低的矛盾,给出一种按需服务的解决方案,在成本和损失之间达成平衡。本文主要工作如下。首先,对当前的云防御系统进行研究,当前的DDos云防御系统为了提高服务的资源使用率,服务分别运行在高防机房和普通机房,通过使用DNS解析的方式实现正常服务和DDos防御的切换,这种手段主要优点为丢失攻击流量更换服务ip的方法加大了攻击者攻击难度,主要缺点为在流量迁移过程中正常的访问流量也将一起被丢弃,正在接受服务的用户需要重新建立请求保证服务持续。然后,根据已有云防御系统的优点与缺点,结合并引入软件定义网络(Software-Defined Networking,SDN)。SDN 作为新一代网络架构,将网络中的转发平面和控制层面分离,使得数据和逻辑解耦,为DDos 的检测与防御都带来了新的解决方向,因此本文提出基于SDN的DDos防御系统。最后本文设计与实现一套基于SDN的DDos防御系统。首先对DDos防御系统分别进行功能需求分析和性能需求分析;然后系统架构设计上本系统总共包含有五层分别为交互层、服务层、数据层、SDN应用层、硬件层;接着根据系统架构对关键技术进行选型和数据库设计;再者在系统实现上主要内容包括有转发模块/统计模块/安全策略模块,逐个实现DDos防御功能;最后,对该系统通过实验进行功能验证以及进行数据采集分析。实验的结果表明,本文提出的防御系统能够在DDos攻击期间以及大规模访问期间可以最大限度的保证合法用户对服务的资源访问,缓解攻击带来的影响。
其他文献
风险控制系统的建设逐渐变成了互联网金融行业的核心问题与研究热点。风控系统是指能够为风控策略管理人员提供风控策略配置功能,并且能够将风控策略转换为风控服务的软件系统。但是当前已知文献中的风险控制系统建设存在以下问题:1)目前国内外相关文献的研究主要集中于风险控制理论、大数据挖掘、人工智能模型技术、业务架构等,而系统落地实现方面很少有研究,现有的风险控制系统大多数基于自身特定场景下定制化开发,通用性较
近年来,地空通信作为第五代移动通信网络(Fifth Generation of Mobile Networks,5G)中智能交通系统的重要组成部分,受到了学术界和产业界的高度关注。为了对地空通信系统进行方案设计和性能评估,地空场景下非平稳随机信道模型的研究与实现至关重要。地空信道复杂多变,其非平稳特性难以使用平稳的随机过程描述,Markov非平稳信道模型能很好地模拟真实地空信道信号衰落包络在时间轴
语音增强任务可以分为干扰抑制和声源分离两大类任务,是当今语音信号处理领域重点研究方向之一,同时也是自然语言处理关键前端技术之一,具有重要的研究价值。由于传统语音增强算法对信号做出的假设限制了其应用场景,具有强泛化能力的神经网络算法成为了主流的算法。为此,本文主要围绕基于神经网络的语音增强算法展开了一系列研究。1)针对干扰抑制问题,以时域卷积神经网络作为基础结构,重点考察了掩蔽机制、优化准则、残差块
随着互联网技术的发展与大数据时代的到来,文本数据的规模正在呈爆炸式增长。新闻文本数据中通常蕴含着丰富的高价值信息,然而用户很难从中高效地获取这些有价值的信息。而信息抽取可以从非结构化文本中过滤掉大量的冗余信息,保留高价值、结构化、高可用性的数据。关系抽取作为其重要子任务,旨在从非结构化文本中提取实体之间的关系。同时,关系抽取的结果还可以应用于人物社交网络的构建、知识图谱的构建等下游任务中。为了挖掘
移动边缘计算是一种新兴的体系结构,通过将云资源(例如存储和计算能力)部署到无线接入网络的边缘来增强移动云计算的能力。这为用户提供了强大而高效的计算、存储、能效、移动性、位置以及上下文感知支持。移动边缘计算支持各种需要超低时延的创新应用和服务。然而,在移动边缘计算任务卸载的研究中,高速运动的用户在进行计算任务卸载时会导致计算任务在系统中频繁迁移,从而引入额外的传输时延并降低用户体验。同时,在将移动节
深度学习在图像识别、语音识别、文本匹配等各种复杂任务中都表现出强大的特征表示学习能力,并逐渐应用于自动驾驶、语音控制、恶意应用检测等与用户生命财产息息相关的场景中。然而对抗样本的存在给这些应用蒙上了一层阴影,对抗样本是在正常数据中加入细微扰动所得到的恶意输入,能够导致性能良好的模型做出错误决策,对于图像数据,这种扰动常常难以被人眼发觉。更严重的是,对抗样本表现出迁移性,即用于攻击某一目标的对抗样本
在智能手机飞速发展的今天,人们对手机的依赖性越来越大,自然而然就导致手机内会存储大量的隐私数据,其中包括视频、文件、图片,甚至联系人以及通话记录等。局限于手机自身系统以及相关软件防护的不全面性,导致用户的隐私数据存在非常大的隐患。基于这样的场景,本次设计开发出这款应用系统,帮助用户解决这个后顾之忧。本文在研究Android相关技术的基础上,采用MVC为框架设计并实现主界面隐私数据的获取和展示。从隐
近年来,无人机发展势头迅猛,市场份额爆发式增长,是全球新一轮科技革命和产业革命的热点。无人机以其高灵活性、高机动性和可视距等特性,十分适合作为空中基站,在一些极端情况如火灾、地震以及一些基站信号无法覆盖的情况下可以发挥重大作用。无人机通信自组网具有组网灵活、抗毁性强以及容量大等优点,成为了研究的一大热门。本文针对上述情况,对无人机自组网系统进行了研究,自组网系统包括多架无人机与多个用户,采用时分多
无线通信技术的发展,极大地加速了移动网络数据业务量的增长,而大容量、高速率、低时延等通信指标的升级又进一步加剧了低频段频谱资源的枯竭。为了满足无线通信持续增长的需求,需要研究与开发更高频段的毫米波/亚毫米波段。而毫米波/亚毫米波段拥有丰富的连续空闲带宽资源,具有波束窄和受天气干扰影响小等优势。因此作为第五代(5G,Fifth Generation)移动通信系统通信波段的毫米波乃至于频段更高的亚毫米
随着互联网的快速发展,现有的网络体系结构已经难以满足社会的需要,网络僵化问题日益严重。网络虚拟化技术能够将底层网络资源抽象化,允许多个虚拟网络共存于同一底层网络中,是应对网络僵化的有效手段。虚拟网络映射问题是网络虚拟化领域的关键问题,其主要目标是将带有多种约束条件的虚拟网络请求映射到底层网络上,并尽可能地使网络运营商的收益最大化。利用单一的启发式算法解决虚拟网络映射问题存在着容易陷入局部最优值与收