【摘 要】
:
微分方程起源于各种应用学科中,例如核物理、气体动力学、流体力学、边界层理论、非线性光学等。非自治系统的研究是微分方程的一个重要内容,在实际应用中,许多物理问题都可以转
论文部分内容阅读
微分方程起源于各种应用学科中,例如核物理、气体动力学、流体力学、边界层理论、非线性光学等。非自治系统的研究是微分方程的一个重要内容,在实际应用中,许多物理问题都可以转化为求解非自治系统(微分方程组)的问题,通过设置人工势场和人工边界条件的办法去控制微观粒子的量子运动,非自治系统的哈密顿量或边界条件通过某些参数依赖于时间,这些随时间变化的参数体现了人类对系统的控制或环境对系统的影响,因此对非自治系统算法及理论的研究对推动量子系统的发展非常重要。能否得到适当精度和可靠的数值解在很大程度上依赖所用的数值方法。精确度高、稳定性强、收敛性好、计算量少的算法显得尤为重要。本文在再生核空间中给出了非自治系统的求解方法。对于线性的微分方程组,主要利用再生核函数构造出再生核空间的完全正交系,将非自治系统的解以级数形式精确的给出,并通过对精确解的级数进行截断,从而得到其近似解。方法的创新之处在于证明了近似解收敛到精确解。对于非线性微分方程组,构造了一个迭代序列,证明了迭代序列是有界的,利用迭代序列构造近似解的表达形式。方法的特点在于对任意给定的初值函数,近似解收敛到方程的精确解。本文给出了一些数值算例来验证我们的方法的精度,数值结果表明了本文的所提方法的可行性和有效性。
其他文献
分数色数和圆色数都是图的色数的一个推广,研究图的分数色数和圆色数对于我们去更进一步地研究图的顶点色数有着很重要的意义. 本文研究的主要对象是一种特殊的图——整数
文中首先构造了一种新型密钥流生成器:复合控制生成器,它是由两个GF(3)上的线性移位寄存器(简记为LFSR)构成,文中详细讨论了复控序列(复合控制生成器生成的序列)的周期、线性
本文主要是针对含p-laplacian算子的奇异四阶四点边值问题的正解研究,在给定非线性项各种不同的假设前提下,利用不同的方法分别得到了四阶微分边值问题的伪C3[0,1]正解存在唯
本文借助有限体积元方法对大气污染模式问题进行数值分析.全文共分三个部分,第一部分是引言,给出关于有限体积元方法和大气污染模式的简单介绍;第二部分针对一维大气污染模式问
由于极大码充分利用了信息传输通道的整个空间,所以对它的研究成为码论中非常活跃的课题.但是关于它的一个猜想:“令X∈A*是一个有限极大码,则X交换等价于A*中的一个有限极大
本文主要研究下面一类非线性耦合方程组的Cauchy问题,其中α是常数,f(u,w)与g(u,w)是给定的非线性函数,u(x,t)和w(x,t)是未知函数,u0(x),u1(x),w0(x),w1(x)是给定的初始函数
本文分析了上市公司短期资产管理中存在的问题,对存货,应收账款,预付账款,短期投资,货币资金的详细分析找出问题所在,列出重点进行分析,再通过对各部分的深入了解找到问题出现的原因
本文主要研究了两个素数的一次方和一个素数k次方丢番图不等式的问题.在牟全武研究的基础上,利用扩大主区间的方法,对这一Diophantine问题的结果进行了改进.得出了下面的结论
基于T-S模型,本论文对基于采样数据的非线性奇异摄动系统的鲁棒H∞控制问题进行研究.对于T-S模型中规则后件中的各个局部线性模型,利用“输入滞后”(inputdelay)方法,将基于采