【摘 要】
:
随着广域时间测量技术和电力系统实时监控手段的发展,越来越多的强迫振荡被检测出来,威胁着电网的稳定运行。与“负阻尼”引发振荡不同的是,强迫振荡是由周期性扰动引起的系统共振,当扰动频率接近电网固有频率时,这些小的干扰被迅速的放大和扩散,无法利用电力系统稳定器对其进行抑制。目前强迫振荡抑制方法的研究,大多数将目标放到扰动源的定位和控制上,而缺少在宏观整体方面的有效抑制方法。为此,本文对电网强迫振荡的抑制
论文部分内容阅读
随着广域时间测量技术和电力系统实时监控手段的发展,越来越多的强迫振荡被检测出来,威胁着电网的稳定运行。与“负阻尼”引发振荡不同的是,强迫振荡是由周期性扰动引起的系统共振,当扰动频率接近电网固有频率时,这些小的干扰被迅速的放大和扩散,无法利用电力系统稳定器对其进行抑制。目前强迫振荡抑制方法的研究,大多数将目标放到扰动源的定位和控制上,而缺少在宏观整体方面的有效抑制方法。为此,本文对电网强迫振荡的抑制方法进行研究,建立了强迫振荡下电网类Kuramoto模型,利用复杂网络理论,通过调整电网的潮流流动通路来改变固有频率,减少强迫振荡对电网的破坏。为从电网整体方面提出抑制方法。研究了强迫振荡的产生机理,发现改变系统固有频率能够有效抑制强迫振荡。为简化对电网各元件的分析,利用复杂网络理论研究电网连接结构对固有频率的影响,并建立能够引发强迫振荡的电网类Kuramoto模型。利用电网经济优化运行中的输电线路切换策略实现固有频率的改变,并通过枚举法进行运算得到最优的切换策略,提出了强迫振荡的抑制方法。为使所提出的抑制方法更适配电网的实际运行,扩大适用的电网范围。考虑了电网的实际运行的约束,对提出的抑制方法进行限制,在运算过程中添加电网全连通和无输电阻塞的约束条件,剔除使电网不能稳定运行的切换策略。并且采用基于精英保留策略的遗传算法来制定输电线路切换策略,减少所需的计算量。为验证所提出的强迫振荡抑制方法,利用国内某地区电网进行仿真运算。根据该地区的电网情况,分析了地区内风电引发强迫振荡的可能性,确定扰动源的位置。并根据实际电网的参数建立类Kuramoto模型,利用遗传算法制定输电线路切换策略,实现强迫振荡的抑制。在BPA中对比切换策略前后的振荡情况说明强迫振荡抑制方法的有效。
其他文献
为避免传统固相摩擦纳米发电机(TENG)的劣势,改善电气输出性能,采用固-液双相摩擦的方式制备TENG。镓铟合金作液态金属汞的主要替代材料,将被用作液相摩擦材料,固相材料为聚酰亚胺(PI),提出一种通过质子辐照对固相摩擦材料PI表面改性,实现固液双相TENG提升的新手段。通过对辐照注量、辐照能量等参数对TENG性能影响的探究,并比较质子和电子辐照对TENG影响的差异及原因,获得PI与Ga-In共晶
随着电动汽车的不断发展,锂离子电池因具有高功率密度、无污染等诸多优点而被广泛应用。然而,在寒冷条件下锂离子电池容量衰减严重,充放电性能变差。因此,需要在低温条件下对锂离子电池进行加热。然而,现有的内部加热装置大多为非隔离型的有线加热,该方式存在易漏电、插头插座不匹配等问题。此外,目前研究的加热装置不能灵活的在线调整加热电流的幅值、频率,这降低了电池的加热速度。针对上述问题,本文提出了一种可调频、调
人类日益增加的空间领域活动加剧了对航天推进技术的需求,电推进由于具有比冲高、寿命长、结构紧凑等优势逐渐引起了航天界的关注与重视。为了满足达尔文计划,地球重力场反演,引力波探测等空间任务,各国研究机构加大了对微牛级电推进的研究力度。射频离子推力器因其良好的缩放特性及简单的结构,成为了微牛级推力器的不错选择。由于微型射频离子推力器存在点火困难的问题,因此本文在设计了一款4cm直径的推力器的基础上,对其
随着碳中和目标的提出,越来越多学者开始研究如何实现这一目标。在能源领域,可以通过碳捕集和低碳或无碳燃料实现这一目标。氨气作为一种不含碳元素的气体,可以作为燃料进行燃烧。理论上氨气完全燃烧产物只有水和氮气,是一种新颖的无碳燃料。相对于同样不含碳元素的氢气,氨气燃烧现象较为平缓,也方便储存;但是氨气实际燃烧存在许多问题。氨气燃烧不如烷烃燃料稳定,燃烧尾气中含有大量的燃料型NOx,这些因素都限制了氨气作
在早期由于电感储能效率和开关管器件频率低,电流源逆变器电感值选取的比较大并且整个系统效率低,电机驱动系统主要采用电压源。随着高温超导材料的发展,电感储能效率变高,尤其最近以来宽禁带半导体器件Si C、Ga N的高速发展,电感选取值下降,基于电流源逆变器的电机驱动系统成为了新的研究热点。首先,本文以前级为DC-DC变换器的电流源逆变器三相永磁同步电机控制系统作为研究对象,给出了所选拓扑结构的数学模型
太阳能是地球取之不尽、清洁环保的核心能源。在地面上利用太阳能发电,受到大气层的吸收和散射、云雨雾雪的衰减、季节和昼夜更替的影响,能量密度较低且不稳定。在地球同步轨道上,太阳光线不会被大气层减弱,也不受季节和昼夜变化的影响,99%的时间内可稳定接收太阳辐射,平均1.353k W/m~2,约为地面的6~15倍,是建设空间太阳能电站的理想位置。空间太阳能电站是当前国际太阳能领域的前沿科学方向,聚光器是其
全钒液流电池(vanadium redox flow battery,VRB)因长寿命和低成本等特点而受到越来越多的关注。目前,商业Nafion膜高昂的价格和高钒离子渗透率限制了全钒液流电池推广和应用。因此,低成本和高性能的钒电池用隔膜的开发非常有现实意义。金属有机骨架(MOF)是一类由含金属单元和有机连接基组装而成的二维无机纳米材料。在众多的MOF中,MOF-UiO-66及其衍生物因为合适的孔径
化石能源不可再生,电动汽车(Electric Vehicle,EV)的发展必将成为主流。电动汽车作为一类新型的可控负荷,大范围地接入智能电网后,使智能电网面临诸多的机遇与挑战。一方面,大量的电动汽车通过充电桩与电网连接时,会导致电力系统的阻尼与惯性的缺失;另一方面,电动汽车大部分时间处于停止状态,其车载电池中存储了巨大的能量,可以对其加以利用。本文基于虚拟同步机(Virtual Synchrono
由于倏逝波的隧穿作用,当物体间的距离小于热波长时,辐射换热会突破普朗克黑体定律的限制,得到几个数量级的增强,此时物体的辐射被称为近场辐射。随着微纳尺度制造技术的不断进步,近场辐射展示出了巨大的应用潜力,引起了研究者的广泛关注。当两个粒子间引入额外的物体,由于多体效应,粒子间的近场辐射换热会得到增强,并且物体的形状、尺度、材料特性等会对粒子间近场辐射换热产生影响。本文根据前人的研究,运用粒子周围物体
全球范围内的资源消耗和环境退化导致人们对可再生能源的开发和利用越来越感兴趣。海洋能中的波浪能被认为是最有前途的可再生能源之一,其取之不尽,清洁无污染。其中基于浮式平台的多浮子波能转换器(Wave Energy Converters)是波浪能利用的重要发展方向,目前研究WECs的采能、储能是大多数研究单位的重点,对于浮子与浮式平台的耦合及浮式平台的稳定性的研究相对较少。本文研究了某种同轴阵列式浮子-