【摘 要】
:
非参数统计的方法是统计学中重要方法。对于固定设计回归模型,在独立样本下,这种非参数回归已有许多学者研究过,如Priwstly和Chao[1],Casser和Muller[2]AhmadLin[3]等,在α-混合条
论文部分内容阅读
非参数统计的方法是统计学中重要方法。对于固定设计回归模型,在独立样本下,这种非参数回归已有许多学者研究过,如Priwstly和Chao[1],Casser和Muller[2]AhmadLin[3]等,在α-混合条件下,Rrassas、Tran和Ioannides[4]研究了g_n(x)的渐近正态性,而在NA条件下至今还没有这方面的研究,因此本文在NA条件下讨论g_n(x)的渐近性态。应用这一结果具体地讨论了Gass-Muller估计和priestley-Chao估计,得到相应的结论。文献[5]在独立同分布下给出了近邻权估计强相合性,本文在一维情况下将其推广到NA样本情形,得到与独立同分布一致的结论。
其他文献
该文主要讨论了抽象空间中向量最优问题的一些理论,以及求解一般二次规划问题的一种新算法.文章分别在线性空间和线性拓扑空间中给出次似凸向量值映射的定义,在线性空间中给
该文主要分为二部分,分别讨论了半参数回归模型,随机删失半参数回归模型的大样本的性质.第一部分主要讨论了固定设计下半参数回归模型yi=xβ+g(t)+ε,i=1,2,…,n.综合最小二
设{x_n,n≥1}为同分布样本序列,f(x)为X_1的概率密度函数,基于样本X_1,…,X_n,1969年WolvertonandWagner([1])提出f(x)的递归型核估计f_n(x)=1/nsumfromj=1ton(1/(h_j)K((x-X_j)/h_
该文研究环R上的一种图结构.将环R中的元素看作一个图的顶点,N(R)为环R的幂零元的集合,两顶点x,y之间有边相连当且仅当xy∈N(R).在这种图结构下,R可以看作一个(简单)图,而且
随着现代化和信息化的不断发展,人们对现代控制系统中性能指标要求也随之越来越高,正常的线性系统逐渐不能满足当前工业信息化的发展了,因而出现了很多衍生的线性控制系统,如
近来,越来越多的具变指数增长的非线性问题,例如电流变流体模型,出现在自然科学及工程技术当中。这使得在偏微分方程的研究中,经典的Lebesgue和Sobolev空间表现出其局限性。所以,
在流体力学和工程计算中有这样一类问题,求解区域中物理有大的间断或求解区域有活动的边界(包括激波、自由面、物质界面).如气动力学的激波,流体流动与空气的交界面,结晶、凝
该文研究了正线性算子的点态逼近定理和神经网络全局收敛条件两方面的内容.一、正线性算子的点态逼近定理.研究了Bernstein-Durrmeyer算子r阶线性组合的逼近正逆定理,得到1-1
上世纪90年代初,Peter Rowlinson和M.N. Ellingham在各自的文章中独立提出了图的星补概念.设Ii是图G的k>0重特征值,X C V(G),若|X I=k且Ii不是G- X的导出子图的特征值,则称X
该文分为八章.第一章介绍了有关概念及相应的嵌入问题的背景及研究结果.第二章介绍研究可分解设计特别是拟Kirkman三元系的嵌入问题的一般性构造原则与构造方法.在第三章中我