复杂背景下目标的激光脉冲波束散射特性及其应用

来源 :西安电子科技大学 | 被引量 : 0次 | 上传用户:mangix16
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
当激光脉冲波束照射复杂目标表面时,回波信号中不光有目标产生的散射回波,也同样存在目标所处的环境产生的散射回波。本文针对目标在不同环境背景中的激光脉冲波束散射情况,分别研究了在海面背景和典型地表背景下不同目标的激光脉冲散射回波,并将其散射特性应用到激光引信回波仿真中,实现了包含动态目标和复杂背景场景的激光引信仿真。本文首先研究了激光脉冲波束入射复杂目标表面时散射回波的计算方法,深入分析了目标姿态、入射角度、脉冲宽度以及目标表面不同材料对散射回波的影响。在研究海面背景下目标的激光脉冲波束散射时,首先利用Elfouhaily谱实现不同风速和风向角的海面建模,为了提高仿真建模的真实感,又基于我国南海部分海域的实测海面参数,利用海谱模拟张力谱部分,真实海域参数模拟重力谱部分,将二者结合产生三维海面,利用建成的三维海面模型研究了不同海面背景的散射回波,并在海面上方添加飞行目标构成复合散射场景,计算并分析了复合散射回波。其次,本文建立了起伏地表模型,为了获取典型地表激光双向反射分布函数(BRDF),分别利用AMBRALS反演算法、典型地表BRDF模型以及实验室材料样片激光BRDF测量三种方法获得了草地、沙地、裸土三种地表类型的BRDF,计算并分析了不同类型地表的激光脉冲波束散射回波,并在地面上方放置运输车目标,研究地表与目标复合散射特性。最后建立了激光引信仿真系统,构建了海面背景下飞行目标以及地面背景下雷达站与动态车辆目标等典型场景,结合不同参数计算并分析了激光引信回波特性。本文的研究成果可以扩充激光引信目标数据库与背景干扰数据库,为空空导弹搭载的激光引信设备在目标探测、抗背景干扰技术设计与验证提供数据支撑。
其他文献
插入/删除错误(Insertion/Deletion Error),即在信息传输过程中插入(Insertion)或删除(Deletion)一些信息比特,导致发送序列和接收序列不同步。随着通信系统传输速率的提高和存储容量的增加,现代通信系统和存储系统对信息同步的要求越来越严格,接收方在接收信息时很容易因为物理条件限制导致信息同步失败,产生插入/删除错误。插入/删除错误经常出现在高密度磁存储系统、赛道
在计算机视觉领域中,多目标跟踪算法一直是研究人员和科研机构关注的热点。在大数据时代如何高效地分析和利用这些数据并且从中挖掘出具有价值的信息是一个亟待解决的难题。使用多目标跟踪算法可以在视频序列的每一个视频帧中确定所有感兴趣目标对象的位置,并且在连续的视频帧中保证同一个目标对象的身份信息不发生改变,最终得到所有感兴趣目标对象的运动轨迹。因此在计算机视觉领域中,对于多目标跟踪算法的研究具有非常高的价值
学位
为了突破当前通信系统的速率瓶颈,达到超高速数据传输的要求,毫米波频段的应用受到了国内外学者的广泛关注。毫米波因为其超高频特性,有利于提高传输速率;但同时也因为其超短波长,使信号在传输过程中易受突发干扰,导致信息传送失败。针对毫米波通信易受突发干扰的问题,第五代移动通信(5th-Generation,5G)系统采用两类解决方案:一是设计合适的大规模多输入多输出(Massive Multiple In
电子产品的发展由于功率MOS器件的出现进入到了一个节能高效的新阶段。为了进一步降低特性阻抗,提高集成度,功率MOS器件的研究重心开始往垂直型MOSFET结构转移,以VDMOS结构和UMOS结构为代表,无论是针对开关应用还是线形应用而言,两种结构都是理想的功率器件。功率器件的优化目标是为了获得高击穿电压(BV)和低比导通电阻(Ron,sp),并且打破两者之间的极限关系。随着以硅(Si)材料为基础的功
学位
学位
在这个信息技术快速发展的时代,传统以中央处理单元为核心的计算系统在当前海量数据局面下显得举步维艰。随着多种编码方式以及通信体制的出现,急需一种融合当前多种计算资源类型的新型计算系统来满足多领域日益增长的计算需求。通用异构计算系统包含丰富的计算处理资源,十分契合当前对于新型计算系统的要求。本文立足于通用异构计算系统项目,针对如何提高系统资源的利用率以及系统的调度效率的问题,总结当前资源可重构问题,阐
目标分类是图像和视频理解的一项重要的基础性任务,目的是将目标区分成不同的种类,达到识别目标的目的。传统的视觉研究是在帧的信息格式上进行的,以图像为信息载体的方式成为了计算机视觉等多个领域普遍使用的方法,但是图像并不是视觉研究的唯一选择。随着视觉研究的发展,传统图像传感器遇到了帧率有限、数据冗余和动态范围低的发展瓶颈。仿生动态视觉传感器(Dynamic Vision Sensor,DVS)仿照生物视
电子器件的发展一直对我们的日常生活与国家军事产生巨大的影响,其中航天电子器件更是其中的关键。但是,在空间环境中拥有相当数量的粒子与空间射线,电子器件的正常工作会被它们所影响。当空间粒子轰击进入器件时,会与靶材料发生核反应,使得单粒子效应产生。而SOI器件拥有体硅器件所不具备的优势:能够避免器件的寄生闩锁效应的产生,该类器件也拥有较小的寄生电容、更快的电路速度、更高的集成密度、不显著的短沟道效应等优