酸碱双功能金属有机框架的可控制备及级联催化性能研究

来源 :湖南大学 | 被引量 : 0次 | 上传用户:cicf1986
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
级联反应是由两个或以上连续独立反应组成的反应过程,且在一个反应器中发生,无需分离和纯化中间产物。因而级联反应可以有效简化工艺过程,降低能耗,是一种高效且对环境友好的化学合成方法。实现级联反应通过需要同时使用多种催化活性中心,因而催化剂的设计是级联反应的核心步骤。金属有机框架是一种由金属离子或团簇和有机配体通过配位作用形成的多孔晶体材料。金属有机框架除了具有高孔隙率、高比表面积等特征外,还具有易功能化的特征,因而具有很强的可设计性。通过在金属有机框架中设计不同类型的催化活性位点(如金属节点、有机配体催化活性中心和孔隙中的催化物种),金属有机框架有望制成多功能催化材料,应用于级联催化反应。本论文可控制备系列酸碱双功能金属有机框架,以缩醛水解和醛-腈缩合级联反应为模型,通过控制催化活性中心位置,调节酸碱双功能金属有机框架的催化性能。
  (1)通过混合配体合成和后修饰合成法制备富含氨基和磺酸基的酸碱双功能金属有机框架UiO-66-NH2-SO3H。所得催化剂的双功能活性中心均匀分布在金属有机框架中。通过控制混合配体的比例可以改变金属有机框架中催化活性中心的含量。相比较含单一活性中心的金属有机框架(UiO-66-NH2和UiO-66-SO3H)UiO-66-NH2-SO3H通过酸碱活性中心的协同作用表现出更加优异的催化活性,使反应产率达到100%。当改变两种活性中心相对比例时,反应的产率会发生变化。与酸碱活性中心1∶1时的催化情况相比,酸性活性中心增多时,级联反应的整体反应速率有所提高,且以4-丙基苯甲醛二乙缩醛,4-(二乙氧基甲基)-反-均二苯乙烯为底物的级联反应产率也分别提高了3.5%和6%。并且UiO-66-NH2-SO3H显示了较好的可循环使用性,经过5次循环使用后,依旧保持了较好的催化活性。
  (2)利用外延生长法合成两种核壳结构的酸碱双功能金属有机框架:UiO-66-SO3H@UiO-66-NH2和UiO-66-NH2@UiO-66-SO3H,使酸碱活性中心分别有序富集在壳层或核层,实现两种催化活性中心分离。应用于级联催化反应时,核壳结构的酸碱双功能金属有机框架显示出尺寸选择性催化性能。因底物水解后更易在MOFs中进行扩散,故UiO-66-NH2@UiO-66-SO3H的整体催化效果明显优于UiO-66-SO3H@UiO-66-NH2,其对于尺寸较小的底物分子苯甲醛二甲缩醛和4-丙基苯甲醛二乙缩醛,催化产率达到100%和92.2%。4-(二乙氧基甲基)-反-均二苯乙烯的尺寸较大,在MOFs中扩散困难,难以与核层活性位点接触,且易于堵塞MOFs孔道,使MOFs失活,故以UiO-66-SO3H@UiO-66-NH2和UiO-66-NH2@UiO-66-SO3H作为催化剂时反应产率仅为53.6%和72.4%,分别与UiO-66-NH2和UiO-66-SO3H的催化结果相近,并未明显表现出酸碱活性位点协同作用的优势。
其他文献
柑橘青霉病是柑橘采后主要病害之一,其致病菌株是意大利青霉菌(Penicillium italicum)。小分子RNA(Small RNA, sRNA)是一种由双链RNA或具有茎环结构的单链RNA经Dicer等RNAIII酶切割成长度为20~30个核苷酸的非编码RNA分子。sRNA能够以序列特异的方式来介导转录后水平的mRNA降解或抑制基因的转录后翻译,从而调控基因的表达。在生物体内sRNA作为基因调节因子,对生物体的生长发育、生物与非生物胁迫应答等生物学过程发挥着重要的作用。本研究通过实验学的手段验证了意
辣椒是我国种植面积最大的蔬菜作物之一,具有极高的经济价值。果实是辣椒最主要的经济产出品,而果实的发育涉及众多生理生化及内部分子机制的调控变化。当前,microRNAs测序、转录组学和蛋白组学技术的飞速发展已经为番茄、苹果和葡萄等众多经济作物果实发育机理和品质形成调控机制的解析提供了重要帮助。本研究以不同发育阶段的纯合自交系辣椒为研究材料,通过对其品质性状测定,microRNA鉴定、转录组测序和蛋白组测序分析,在基因和蛋白质水平上,结合生理表型对辣椒果实发育过程中分子响应和调节机制进行研究,主要的研究结果如
近年来,多酸化合物因其确定的化学结构、大的电荷容量和质子通道,在质子传导材料的开发和应用方面具有极大的潜力。然而,多酸的高水溶性与高温度响应性也限制了其在质子传导方面的发展。因此,研究者们倾向于采用进一步合成某些复合材料的策略,如多酸-有机金属框架(POM-MOF)和多酸-共价金属框架(POM-COF),以获得质子传导性和稳定性增强,且在水中溶解度较低的材料。
  直到最近,研究人员表明合成无机-有机杂化簇为固态质子导体的构建提供了一种新的便捷且具有成本效益的策略。在无机-有机杂化团簇的合成中,合理
果实颜色作为辣椒果实的重要性状之一,长期以来受到育种家和消费者的关注。鲜艳的颜色不仅能够增强果实的商品性,同时也可作为评判果实成熟的重要指标。大量研究表明叶绿素、类黄酮及类胡萝卜素与辣椒果实颜色的形成紧密相关,因此开展叶绿素、类黄酮及类胡萝卜素合成相关分子机理的研究对改善辣椒果实色泽及提高辣椒的经济价值具有重大的意义。本研究通过集群分离分析(bulked segregant analysis, BSA)结合RNA测序的方法(BSR-seq)对叶绿素及类胡萝卜素合成相关的基因进行定位。同时以4个不同果实颜色
开花是植物生长发育过程中的一个重要阶段,是高等植物由营养生长阶段向生殖生长阶段转化的中心枢纽。该过程受到多种内在及外在因素影响,从而形成多条开花途径。在模式植物拟南芥中至少存在六种开花调控途径:光周期途径,春化途径,温度途径,赤霉素途径,自主途径和年龄途径。这几种开花调控途径既独立又相互联系,共同调控植物在合适的时间开花。研究各个开花途径之间的交叉会话,将使我们更好的了解植物开花的精密调控机制。
  F-box蛋白FKF1(FLAVINBINDING KELCH REPEAT F-BOX1)是拟南芥
苯并呋喃酮是天然产物、药物活性分子以及抗氧剂等功能材料的基本骨架结构,其主要是通过Friedel-Crafts反应、分子内脱水关环反应和过渡金属催化反应进行合成。但是这些反应存在着一定的缺陷,如反应底物预功能化、底物范围窄、官能团容忍度差、步骤繁琐和操作复杂等,因此,开发出一种高效、绿色且简单的方法来合成苯并呋喃酮具有重要的理论和现实意义。由于苯并呋喃酮中3号位的C-H键pKa值较低且容易烯醇化,
【中图分类号】G623.8 【文献标识码】A 【文章编号】2095-3089(2018)27-0268-01  一、课题魅力与教材意图  传统体育教学片面强调促进学生身体和技能的发展,而对培养学生体育意识、能力和习惯,培养竞争意识和创新意识,并使学生获得心理和情感上的满足则认识不足。在实施新《课程标准》发展素质教育的今天,小学体育教学更需要提升学生的课堂参与积极性与学习兴趣。  《障碍跑》是小学体
期刊
绿色荧光蛋白(GFP)的发现以及荧光染料的化学标记作为活细胞成像的多功能工具,引发了生命科学和生物医学研究的一场革命。随着荧光探针工具箱和成像平台的不断发展使得无创且信息丰富的成像实验成为可能。在最近的十几年来,荧光探针分别在多个领域例如材料科学、生命科学、信息科学等许多领域产生重大的影响,荧光探针技术变成了炙手可热的生物医学研究工具,现在已广泛应用于细胞,甚至于生物活体的研究中也取得了不小的进展
随着CO_2捕集利用与封存技术的发展,醇胺溶液作为应用最广的CO_2化学吸收剂已有成熟的工业应用。近年来,由于具有更高的吸收率和更低的热能消耗等特性,γ-羟基二烷基仲胺作为一种高效的醇胺吸收剂引起了人们越来越多的关注。以往通过卤代醇的氨解反应得到此类醇胺的方法具有胺的用量比例过高、反应时间过长、原料难以获得且合成成本高昂等缺点;通过烷基烯酮与伯胺的氮杂迈克尔加成路线得到此类醇胺的方法合成产率很低,
水溶液电化学还原CO2反应既能减少CO2排放又提供一条绿色的非石油路径合成能源和资源,符合可持续发展的观念。电化学还原CO2通常分为两个半电池氧化还原反应:CO2RR和OER。前者由于在水性介质中反应速度缓慢,副产物种类过多以及不可避免的与氢析出反应的竞争使得这类催化反应面临严峻的挑战。后者通常经历复杂的多重质子电子转移过程使得动力学迟滞,导致反应需要较大的超电势。因此必须开发高效、高选择性以及高稳定性的电催化剂对于电化学还原CO2有着至关重要的意义。金属有机框架具有可设计的框架/孔结构、高孔隙率、高表面