论文部分内容阅读
煤炭是我国能源的基石,为经济社会发展提供了经济、稳定的能源,但燃煤发电面临Co2排放的巨大挑战。捕集CO2通常会降低燃煤电站的效率10个百分点以上。超临界二氧化碳(supercritical CO2,简称sCO2)动力循环具有显著提高核能、太阳能、余热回收、化石燃料(天然气和煤)等多种发电效率的潜力,近年来受到日益广泛的关注和研究。本论文研究煤气化与直接加热式sCO2动力循环的集成系统,在能量转换的同时捕集CO2,以期较大幅度地降低捕集CO2引起的效率代价,主要研究内容如下:(1)构建了整体煤气化sCO2动力循环的基准循环,建立了各部件的模型,添加了零维的sCO2透平冷却模型,探讨了煤气化过程为便于直接加热式sCO2动力循环捕集CO2所作的改进,研究了合成气冷却热与sCO2动力循环的热集成,分析了透平进口温度、透平进出口压力、循环最低温度、透平冷气温度、空分制氧能耗等关键参数对效率的影响。在透平进口温度1200℃、透平进口压力30MPa、透平压比10、循环最低温度25℃C的参数下,捕集近100%CO2后的效率可达39.27%,比采用燃烧前捕集CO2技术的IGCC(燃气轮机透平温度进口温度1400℃,汽轮机高压蒸汽温度565℃,循环最低温度36℃,CO2捕集率为90%)效率高3.32个百分点。(2)采用黑箱换热模型的热力学研究方法,对sCO2动力循环进行了参数优化和热集成研究,以获得不考虑具体换热匹配的循环热力学极限效率。不集成空压机中冷热时,效率可达39.54%;集成空压机中冷热时,效率可达41.72%,分别比不集成空压机中冷热的基准循环效率提高0.27和2.45个百分点。参数优化计算还表明,对应效率最高的透平进口温度仅为1200℃,透平压比为10。在更宽参数范围内的优化计算表明,透平压比和回热器热端金属材料的允许温度,不是限制透平进口温度不宜取更高参数的原因。对系统主要部件的烟损失计算和换热黑箱的T-H图分析表明,不宜取更高透平进口温度的原因有二:一是在sCO2透平冷却模型所参考的F级燃气轮机冷却技术水平下,随着透平进口温度的提高,透平冷却引起的效率损失将逐渐超过透平进口温度提高带来的效率收益;二是随着透平进口温度的提高,透平冷气流量的增加,使得循环回流CO2的流量相对变小,冷物流吸热负荷变小,热物流的热无法充分回收,造成效率下降。(3)提出了一种新型双膨胀循环,以改进动力循环回热过程的热集成。除集成空压机绝热压缩热外,合成气的高温段热在嵌套的CO2透平中利用后,集成到sCO2动力循环的回热过程。通过将合成气压缩机、O2压缩机改为完全绝热或部分绝热压缩,绝热压缩热也集成到回热过程。上述措施,解决了因sC02的比热cp变化导致的回热器换热匹配不理想的问题。T-H图的分析表明,动力循环的回热器达到了平行的换热匹配,冷热两端的温差均在10℃左右。由于回热器巨大的换热负荷,其换热匹配的优劣成为决定sCO2动力循环效率高低的重要因素。计算表明,双膨胀循环的效率为41.25%,高出基准循环流程效率1.98个百分点。当假设循环最低温度从25℃降低到17℃时,双膨胀循环的效率可进一步提高到43.67%;采用分流多股CO2吸收各子系统热的非嵌套循环效率为42.26%;当采用超临界压力CO2煤浆气化或亚临界CO2气化时,双膨胀循环的效率分别为41.86%和44.2%。(4)研究了作为联合循环底循环的sCO2动力循环,计算对比了多种不同的sCO2动力循环流程,确定了效率最高的为双路循环。双路循环通过对CO2工质进行多次分流与汇合,消除了 sCO2比热cp的变化对换热带来的不利影响,实现了较好的换热匹配。计算表明,采用相同的燃气轮机排气参数时,双路循环的发电功率为91 MW,略低于三压再热蒸汽循环99.8MW的发电功率。构建了双路循环取代IGCC中蒸汽朗肯循环的系统,设计了合成气热回收方案,计算了整个发电系统的效率。计算表明,系统净效率为43.1%,略低于IGCC电站43.7%的净效率。(5)针对MATIANT循环的回热器热端温度过高,回热器换热匹配不理想的问题,提出了一种改进回热过程的MATIANT循环流程。为降低回热器热端温度,取消了 MATIANT循环的再热过程,用以扩大CO2透平的压比,降低透平排气温度。为改善回热过程的换热匹配,改进后的循环流程设置了再压缩和物流分流等过程,用于改善因sCO2的比热cp在低温段突然变大引起的换热匹配不理想的问题。计算结果表明,改进后的MATIANT循环流程的回热器热端平均温度由原来的806℃C降低到了 625℃;回热器T-H图的分析表明回热器的换热匹配也得以明显改善。在效率方面,尽管回热器换热匹配得到了改善,但因取消了再热过程以及工质平均吸热温度降低,改进后MATIANT循环的效率比原始MATIANT循环的效率略低1个百分点。本文的研究工作,在整体煤气化直接加热式sCO2动力循环方面进行了创新,提出了新型的循环系统,为透平进口温度等关键循环参数的选取提供了新的认识;对整体煤气化sCO2动力循环进行碳捕集这一新颖技术路线进行了探索和尝试,具有重要的现实意义。