论文部分内容阅读
目前,国内外对桥梁抗震、减震分析主要是针对传统的常规地震动进行,很少涉及到长周期地震动的影响。从抗震设计规范到减震设计方法,长周期地震动对柔性结构的影响研究都处于相对薄弱的环节。但长周期地震动自身低频丰富、能量相对集中,其对斜拉桥等柔性结构的影响十分剧烈。因此,针对长周期地震可能产生的破坏,深入分析长周期地震动的特性,研究斜拉桥在长周期地震动作用下的力学响应状态,以及从构造抗震和延性抗震角度提出相应的减震设计方法是十分必要的。本文以主跨为926m的双塔斜拉桥为工程依托,在分析研究长周期地震动特性的基础上,提出采用傅里叶分解算法对长周期地震动进行信号分解及特性分析。在考虑拉索振动特性的前提下,计入拉索垂度效应、大位移效应等几何非线性特征,推导了梁端轴向动力荷载激励下拉索的一阶模态非线性振动方程及双索的非线性振动方程。通过拉索单元划分数量不同考虑拉索的局部振动,对比分析斜拉索采用单桁架(SECS)模型与多桁架(MECS)模型模拟拉索时结构的动力响应特性,并就长周期地震动产生的结构响应特点提出了一种采用粒子群算法的基于ANSYS有限元模拟的长周期地震动斜拉桥粘滞阻尼器参数优化方法。同时从斜拉桥延性抗震设计角度出发,对配高强钢筋的钢纤维混凝土柱进行了相应的拟静力试验。通过对比试验过程中各个构件的破坏形态和力学性能,分析了钢纤维混凝土的滞回性能和抗震能力。根据试验结果,基于OpenSees分析平台,确立了适用于钢纤维混凝土的材料模型本构关系参数,并建立了非线性梁柱单元分析模型。通过对配高强钢筋钢纤维混凝土柱的塑性铰长度的参数分析,提出了适用于钢纤维混凝土柱的桥墩塑性铰长度拟合公式。本文主要研究内容包括:(1)从地震源角度出发,结合远场长周期地震动的特征,提出采用傅里叶分解算法对远场长周期地震动进行信号分解并分析时频能量谱,以便快速判断长周期地震动能量集中频率。(2)基于拉索振动特点,研究单索振动特性及拉索对相邻索的振动影响。通过采用多桁架单元模拟拉索局部振动特性,并综合计算效率与模拟精度效果,提出拉索分段合理划分方法。在考虑拉索局部振动效应后,分析长周期地震动对斜拉桥振动的激励作用。(3)从阻尼器减震角度出发,对长周期地震动作用下斜拉桥粘滞阻尼器减震设计及合理参数优化进行分析。根据粘滞阻尼器的减震响应效果,提出一种采用粒子群算法的基于ANSYS有限元模拟的长周期地震动斜拉桥粘滞阻尼器参数优化方法。(4)从桥梁延性抗震设计角度出发,对配高强钢筋的钢纤维混凝土柱抗震性能进行试验研究,得出该构件的减震效果。根据试验数据,对配高强钢筋的钢纤维混凝土柱的有限元本构模型进行修正,并验证试验结果。针对钢纤维混凝土对桥梁抗震的作用,分析并提出适用于钢纤维混凝土的辅助墩塑性铰长度计算拟合公式。本文创新点主要有以下三点:(1)基于地震动特性研究,首次提出采用傅里叶分解算法对长周期地震动信号进行分量分解及时频能量谱分析。运用该算法可快速进行长周期地震动的集中能量频率判断,用以判定地震动对结构影响的主要频率。(2)基于长周期地震动对斜拉桥非线性地震影响,提出了一种采用粒子群算法的基于ANSYS有限元模拟的长周期地震动斜拉桥粘滞阻尼器参数优化方法。该方法能够有效的得出长周期地震动作用下,斜拉桥结构合理粘滞阻尼器最优参数。(3)基于试验与模拟分析,对配高强钢筋钢纤维混凝土柱抗震性能进行了研究。从斜拉桥延性抗震设计角度出发,提出了适用于配高强钢筋钢纤维混凝土的考虑墩高、轴压比、纵筋率和短边长度的塑性铰长度拟合计算公式。