基于习题表征和学生能力表征的学生知识追踪算法研究

来源 :北京交通大学 | 被引量 : 0次 | 上传用户:danda333
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着互联网的发展,智能教育成为教育发展的迫切需求。学生知识追踪模型能够根据学生的历史学习记录获得习题表征和学生能力表征,追踪学生对知识的掌握情况。智能教育需要准确的学生知识追踪模型。目前,制约学生知识追踪模型效果的两个原因是:(1)习题表征不准确。以知识点为粒度的习题表征难以刻画习题的精确信息;以习题为粒度的表征,由于数据稀疏导致模型参数学习不准确;已有的综合知识点和习题的混合模型采用加性模型进行习题表征,不符合实际数据的分布。(2)学生能力表征不准确。传统模型基于知识点进行学生能力表征,忽略了同一知识点下不同难度习题对学生能力的提升不同,而深度模型在对学生学习能力进行度量时,没有考虑习题难度,并且通过累积学生记录进行学习能力计算的方法不能准确捕捉学生即时的能力变化,也没有考虑学生的长期能力特征。为了解决上述问题,本文基于真实智能教育系统的学生练习数据集,细致测量与分析了学生做题行为和习题难度特征,针对传统模型,提出能够准确进行习题表征和学生能力表征的改进模型,针对深度模型,提出长期和动态相结合的个性化深度知识追踪模型。具体贡献如下:(1)对于传统学生知识追踪模型,本文首先基于真实学生做题数据分析结果,设计了综合考虑习题和知识点的习题难度乘性模型,以改进习题表征。实验表明:该方法将目前主流的知识追踪模型DAS3H、AFM和PFA在Assistment12数据集上的AUC分别提高了0.7%、1.3%和3.5%,在Geometry数据集上分别提高了2.1%、3.5%和3.6%。其次,本文又设计了新的基于习题难度的学生能力表征模型,将各模型在Assistment12数据集上的AUC进一步分别提高了0.2%、5.6%和3.2%,在Geometry数据集上分别提高了0.1%、0.6%和1.2%。最终,本文设计的基于习题难度增强的知识追踪模型DAS3H-DW比当前最新的DAS3H模型,在Geometry和Assistment12数据集上AUC分别提高2.2%和0.9%,证明了本文算法的通用性和有效性。(2)对于深度学生知识追踪模型,本文首先也在模型中引入习题难度信息,然后基于真实学生做题数据分析结果,设计了新的学生学习能力分段表示方法,以实现准确的学生知识状态动态追踪。在真实数据上的实验结果表明:该方法将现有深度知识追踪模型的AUC提高了0.3%。其次,本文引入班级类型对学生进行长期能力特征的区分,AUC提高了0.4%。最终,本文设计的综合上述两种方法的新的深度知识追踪模型DIDKT-CL相比于现有个性化深度学生模型IDKT,AUC提高了0.7%,证明了本文算法的有效性。图19幅,表5个,参考文献52篇。
其他文献
云计算作为二十一世纪初期的新兴事物,目前已步入较为成熟的发展阶段,其依托于虚拟化技术,将各类资源进行有效整合和管理,向用户提供了高效的计算服务和应用软件。近年来,图像处理、地震预测、基因组测序等应用程序生成的工作流日渐复杂,使得越来越多的工作流被提交到云中处理。为了满足各类场景下不同用户的计算要求,国内外云服务提供商纷纷升级扩展云数据中心,但是目前数据中心的资源利用率较低,使得高能耗问题成为云服务
在现代化的大型制造车间中,为节省人力、提高车间生产效率,大量企业都为生产车间和立体仓库引入了AGV系统。AGV(Automated Guided Vehicle,自动导航小车)是指装备有电磁或光学等自动导引装置,能够沿导引路径行驶,具有各种移栽及安全保护功能的运输车。企业在智能物流解决方案中使用AGV,不仅是为了实现内部物流的柔性化,更重要的是借此打通生产各流程,推进生产全过程的数字化,最终实现打
稀疏线性逆问题是指在测量矩阵已知的情况下从观测样本恢复出原始的稀疏信号,在现实生活中众多学科和领域发挥着重要的作用。在通信系统中,通过利用无线信道的稀疏特性,压缩感知理论和其中的稀疏线性求逆算法实现了信令开销的降低和用户容量的扩展。近年来,基于神经网络的稀疏线性求逆算法以其优异的重建性能和快速的收敛特性被广泛地研究。然而,这些机器学习算法忽略了传统迭代算法中的一个关键特征,那就是不同稀疏度的稀疏信
语音增强的目的是通过设计一种高效的信号处理算法,去除带噪语音中的各种干扰噪声,恢复出干净的增强语音,同时要保证增强语音有较高的恢复质量和可理解度。传统的语音增强算法在使用前需要对语音和噪声信号做出严格的假设,这限制了其在一些复杂的现实场景中的应用。近年来,无需任何假设、具有强数据建模能力的神经网络得到研究人员的广泛关注,成为本领域的主流算法。本文主要针对提高卷积神经网络全局建模水平和语音增强能力展
高速飞行列车是利用低真空环境和超音速外形减小空气阻力,通过磁悬浮减小摩擦阻力,实现超音速运行的运输系统。高速飞行列车的运行速度可以达到1,000~4,000km/h,具有高效、节能和环保等优点,有望成为未来的新型交通方式,近年来逐渐成为研究热点。由于高速飞行列车速度比已有轨道交通系统列车的速度高出许多,现有轨道交通系统的运行控制系统无法完全适用于高速飞行列车。因此,有必要针对高速飞行列车的特点,对
随着5G网络全球化部署进程不断提速,各行各业提出运行在用户设备(User Equipment,UE)上的计算密集型和时延敏感型的新型应用。虽然移动云计算(Mobile Cloud Computing,MCC)把高计算任务通过公用网络上传到集中式的云服务器上增强了UE的计算和降低UE的能耗,但是云服务器在空间上远离UE导致传输数据需要花费更高的时延。移动边缘计算(Mobile Edge Comput
近年来,随着深度学习在图像、自然语言等规则拓扑结构的数据上大放异彩,研究者们尝试将深层神经网络推广应用到3D点云数据,并开展了大量关于3D点云神经网络卷积算法的研究。但由于3D点云拓扑结构的不规则特性,特征池化算法,作为推动深度学习成功的一个重要部件,却较少人问津。特征池化算法在深度学习框架中,不仅起到提升计算效率的作用,同时能够提升模型的鲁棒性,是深度学习应用在3D点云数据上必不可少的一环。为此
直线电机驱动的多轴运动系统具有结构简单、加速度大、响应速度快、噪音低等特性,被广泛应用于机械制造的轮廓加工。然而,伺服滞后、各伺服轴之间动态特性不匹配、轴间耦合和外部扰动等因素会导致产品加工误差。如何提高多轴运动系统的轮廓跟踪精度一直是控制领域的研究热点。本文以双轴直线电机龙门系统为研究对象,围绕着如何提高运动系统各伺服轴间的协调性,处理不确定、外部扰动和执行器故障的影响等问题,展开了一系列研究。
由于我国高速铁路的不断发展,铁路系统正面临着更大客流,更多车次的严峻挑战。此外,旅客对于铁路出行的需求也不再仅仅是点到点的运送,旅客在旅途中的工作与娱乐需求也必须纳入考虑。这时,当前高速铁路系统所使用的基于第二代移动通信的GSM-R(Globle System for Mobile Communications-Railway)系统则逐渐显得力不从心,因此新一代高速铁路通信系统的研究势在必行。作为
随着人们生活水平的提高,车辆的普及程度越来越高,随之而来的交通事故也越发频繁。据统计,25%~30%的交通事故与驾驶员对道路的警觉程度直接相关,其中并线过程是交通事故的主要发生场合之一,而在非结构化道路,行人及其他非机动车车辆共享道路,驾驶的安全性完全依靠驾驶员的注意力集中度,因此而产生的交通事故也屡见不鲜,这些都给汽车行业的发展带来了巨大的挑战。为解决上述问题,且基于语义分割应有的特性,即具有多