钛/铜/钛复合板波纹辊轧制工艺与性能研究

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:caifubaguoguo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
钛具有良好的抗腐蚀性能,常被用作电化学阳极的基体材料,但钛的电阻率较大,难以满足电极材料对导电性的要求。针对这一问题,本课题将铜的优良导电性与钛的抗腐蚀性相结合,采用新型波纹辊轧制法制备了Ti/Cu/Ti复合板,这种“三明治”式的波纹状复合板不仅能够满足腐蚀环境下电极材料对导电性、抗腐蚀性的要求,同时还具备良好的力学性能。本文对波纹辊轧制法和传统平辊轧制法进行对比,分别研究了二者对Ti/Cu/Ti复合板力学性能和电化学性能的影响,并使用ABAQUS软件模拟了Ti/Cu/Ti复合板在两种轧制过程中的塑性变形行为。使用万能拉伸试验机、电化学工作站对Ti/Cu/Ti复合板力学性能、导电性能和耐腐蚀性能进行检测,采用SEM、EDS、XRD、EBSD等测试手段对复合板的剥离断口、拉伸断口和界面微观组织的形貌特征、元素分布、生成物相进行了分析。有限元模拟结果表明,在相同压下率下,波纹辊轧制过程中的轧制力比普通平辊轧制大13%,等效应变、等效应力、剪切力也较大。由于波纹复合板单位体积的结合界面接触面积有效增大,使轧制力增大,同时还加剧了板材宽度方向(TD方向)的延展,促进剪切变形,有利于钛金属的撕裂和硬脆层破碎,使较软铜金属挤入,促进界面的撕裂结合,并且,塑性变形过程中产生的大量热量对促进界面结合的影响尤为显著。实验结果表明,Ti/Cu/Ti波纹复合板综合性能最佳。波纹复合板在压下率为50%时结合强度最高为20.44N/mm,此时,它的抗拉强度为370.93MPa,比理论值242.75MPa高52.8%,延伸率为19%。波纹复合板界面的良好结合归因于多种机制的共同作用:波纹状界面有效增加了界面接触面积;强应力和摩擦剪切变形促进金属流动,同时硬脆层破碎,使更多新鲜金属暴露出来。此外,采用波纹辊轧制法时,复合板的加工硬化较弱,变形程度大,界面结合良好,晶粒细化程度大,具有良好的拉伸性能。通过电化学测试结果表明,压下率为50%的波纹复合板表现出最佳的耐腐蚀能力和优良导电性。通过波纹辊轧制法得到的复合板位错密度变小、无杂质、无析出相、晶粒细化,不仅使钛层活性原子数目增多,促进钛表面生成钝化膜的能力,并且促进铜层的孪生和再结晶,使得大量位错被消耗,铜层位错密度降低,从而使复合板兼备了优良的导电性和抗腐蚀能力。
其他文献
煤层回采过程中产生的采动卸压瓦斯涌向工作面,严重影响煤矿井下的安全生产,瓦斯抽采不仅能有效防止煤矿井下瓦斯灾害的发生,还能变废为宝,缓解因瓦斯排空造成的温室效应并增加煤层气清洁能源的应用。本论文采用理论分析、物理试验和现场实测相结合的方法研究了采动区卸压瓦斯覆岩裂隙优势通道演化规律,并基于上述研究结果提出了采动井井位层位的最佳布置方式。主要研究成果如下:通过理论分析、相似模拟试验研究采动过程中覆岩
Mg-Gd-Nd系合金具有良好的固溶强化效果,同时具有很好的时效硬化响应,而在RE元素中加入定量的Zn元素(RE/Zn>1(at))可以形成具有强韧性的(Long period stacking order structure)LPSO结构相,这是提高合金强韧性的有效方法之一。但是LPSO相的形成会消耗RE元素,过量的LPSO相反而会致使合金力学性能下降,同时Zn元素加入会降低RE元素在Mg中的溶
高熵合金作为新世纪最具潜力的合金材料,引起了世界各国研究人员的兴趣,目前高熵合金的研究发展极为迅速,研究成果相继涌现,已经开发出许多具有特殊性能的高熵合金。然而在这些高性能高熵合金中大部分都含有昂贵的合金元素Co、V等,极大限制了工业生产大规模使用,因此本研究立足于开发低成本、高性能的铁基高熵合金,以满足对实际应用的需求。本文通过相图模拟、热力学参数及层错能计算开发出一种不含Co的亚稳型铁基高熵合
当今社会对煤的需求量依然巨大,煤矿企业也随着时代的发展、科技的进步,井下机械化程度不断增加,对煤矿安全的投入也相应增加许多,煤矿瓦斯爆炸、透水等事故发生率降低,却忽视了煤矿粉尘对煤矿生产和矿工身体健康的危害。煤矿粉尘也是井下的主要灾害之一,粉尘达到一定条件就会引起爆炸,煤矿企业也采取了相应措施;而对尘肺病的防治少之又少,造成大量矿工患上尘肺病,受病痛持续折磨,尤其是在综掘巷道中致病性更高。工作时的
传统气体压缩制冷技术采用的工作介质为各种卤代烃类制冷剂,其泄漏会严重破坏环境,且现在该技术的制冷效率已接近理论极限。因此,开发更高效、环保的制冷技术显得十分紧迫。固态制冷是基于固态介质在外场作用下的弹热、磁热、电热效应进行工作的新型制冷技术。弹热制冷因其热效应显著且实现条件简单而受到广泛的关注。Mn-Ni-X(Sn、In、Ga)形状记忆合金在相变温度附近存在弹热效应、磁热效应、形状记忆效应等丰富的
本文通过重力铸造法制备Mg-9Gd-2Nd-0.5Zr合金,对其进行固溶处理和(蠕变)时效处理,通过微观组织观察(包括OM,SEM,TEM,EBSD等)和力学性能测试(维氏硬度,室温拉伸),系统研究了温度、时间、应力大小、应力加载方式等时效参数对合金第二相析出行为和力学性能的影响,探明了应力位向效应的形成机理和晶界无析出带(PFZ)的宽化机制,具体结果如下:Mg-9Gd-2Nd-0.5Zr合金经过
松动和细菌感染是导致钛(Ti)植入体植入失败的主要原因。通过微弧氧化技术可以在钛表面形成具有良好生物活性的多孔TiO2陶瓷膜层,同时在氧化过程中可将在金属抗菌元素(银、铜、锌等)添加到TiO2膜层中赋予其抗菌能力。然而,重金属离子在人体内的毒性问题限制了其临床应用。光辅助抗菌由于远程可控、精准治疗及更高的抗菌效率受到广泛关注。但通过微弧氧化制备的TiO2带隙较宽,无法被近红外光激发产生活性氧(RO
随社会发展和老龄化进程,人们对心血管疾病给予较大关注。治疗心脏血管疾病最有效方式是血管支架植入,而以镁合金为基底的可降解医用生物支架发展前景光明。镁合金在室温下塑性变形能力很差,严重限制了其应用,而在高温成形血管支架会导致其晶粒粗大,不满足服役要求。因此提出细化晶粒后低温成形镁合金血管支架薄壁管的方法。利用预孪晶和等通道挤压剪切变形(ECAP)来对纯镁原材料进行细化处理,成功挤压出了壁厚为0.40
近年来发展高强韧镁合金成为新能源和航空航天等领域为了减重的迫切需求,但稀土元素的昂贵和稀缺限制了高强韧稀土镁合金大规模应用于工业生产,大量研究表明碱土元素也能提高镁合金的力学性能,因此研究碱土元素对镁合金的微观组织和力学性能的影响机制,以及镁合金不同变形工艺的变形机制和强化机理,对发展高强韧、低成本的镁合金至关重要。本文在Mg-Zn-Al系合金中加入碱土元素Ca,起到了细化晶粒、强化镁基体的作用以
目前,我国钢铁产量世界第一,但从钢铁产品结构上来看,与发达国家相比还存在一定的差距。在不断追求高强度高塑性的背景下,采用淬火配分工艺(Q&P)来提高钢的强度和塑性技术快速发展,但大多数学者将重点集中于向钢中添加合金元素来改变性能,对于如何将低成本钢与现有工业化生产相结合涉及较少。本文从实际生产出发,将钢铁企业的热轧工序与淬火配分工艺相结合,旨在获得综合性能优异、价格低廉和能源消耗低的淬火配分钢。在