论文部分内容阅读
随着激光技术的诞生,光学干涉检测在测量范围、分辨率、抗干涉性和测量精度等方面取得了重大进展。激光自混合干涉效应(SMI)是科研人员在探究光反馈效应并且寻找消除不利光反馈影响的方法中产生的。由于SMI具有结构简单、容易准直、可以判别物体运动方向等显著特点,它可以在许多测量领域中取代传统复杂的双光束干涉系统。SMI已经逐渐形成了一个崭新的具有深远应用前景的光学研究方向。近年来,国内外研究人员提出了各种各样的方法来提高自混合干涉技术的测量精度,从而极大地扩展了它的应用范围。目前SMI已经广泛应用于振动、速度、位移、太赫兹成像、医学、以及高精度纳米测量等领域。本文首先阐述SMI效应及其显著特点,然后概述了SMI的历史背景,研究进展和应用进展。其次,基于F-P三镜腔理论,对SMI理论进行了详细推导,建立了相应的数学模型,并通过MATLAB软件分析了外腔相位、线宽展宽因子、光反馈强度三个参数对SMI系统的影响。此外,运用相位解包裹法和相位调制法重构了不同运动轨迹以及不同反馈强度下的目标物位移。进一步地,搭建了基于半导体激光器的自混合干涉实验测量系统,并以PZT和音叉作为被测目标物进行实验,观察分析实验现象。基于对SMI的深入分析,本文提出了一种结合多次反射和偶次幂快速算法的集成测量技术。这种方法不仅克服了多次反射在提高条纹精度上有限的缺点,而且弥补了偶次幂快速算法在被测振幅远小于半个波长时失效的不足,极大地扩展了偶次幂快速算法的测量范围,并且获得了更高的条纹精度。根据集成测量技术的原理,本文利用LabVIEW软件和MATLAB联合编程的方法设计了一种实时激光自混合干涉振动测量系统。该系统能够实时监测目标物的振动幅度且具有纳米级分辨率,这推进了虚拟仪器技术在SMI测量中的应用。