论文部分内容阅读
格子Boltzmann方法(LBM)是上世纪80年代末从格子气自动机(LGCA)发展而来的一种新的计算流体数值方法。与传统数值方法的研究视角不同,LBM是从微观粒子运动的层面来对流体进行数值模拟的。LBM的描述对象是单一粒子的分布函数,分布函数的控制方程为经典Boltzmann方程。而LB方程则是Boltzmann方程在相空间的离散形式,这种离散包括粒子速度空间、时间和空间的离散。通过Chapman-Enskog多尺度法,利用物理量的守恒关系,在满足小Knudsen数和小Mach数条件下,可以将LB方程还原到描述流体运动的宏观流体力学方程。从而,我们可以通过数值模拟粒子的分布来达到描述宏观流体运动的目的。 作为LBM在大洋环流数值模拟中的一些初步尝试,首先有必要考察其对于形式相对简单,物理意义比较明确的机制模式的模拟。从这一思路出发,本文对风生环流的准地转相当正压涡度方程模式,单层浅水方程模式以及多层浅水方程模式进行了LB数值模拟的探讨。 首先,本文建立了一个求解准地转相当正压涡度方程的LB模型。该模型将准地转相当正压涡度方程作为一个平流—扩散—化学反应方程来加以处理,在整体二阶精度下,通过Chapman-Enskog展开成功将LB方程还原到了相当正压涡度方程。与传统方法相比(Byran,1963),该模型具有稳定性好,精度高等优点。在不同Reynolds数和不同边界条件下,LB模型正确反映了风生环流的基本结构和不同边界的耗散特征,并得到了环流从弱非线性解到强非线性解,直至环流发生惯性逃逸等一系列特征。而且,该LB准地转模式还给出了双涡环流的多平衡态以及低频变化特征,这些特征与传统方法所得结果是吻合的。 另一方面,本文对Salmon(1999a)提出的约化重力,浅水方程LB模型进行了改进。通过对碰撞算子引入二阶精度的时间积分近似,在保证模型稳定性的同时,模型具备了整体二阶精度和全显式的特征。它不同于Salmon(1999a)的浅水方程模型,整体二阶精度消除了由离散误差引入的伪粘性应力。而且该模型在引