论文部分内容阅读
实际工程中许多材料都表现出拉压不同模量的性质,若仍采用经典的同模量弹性理论对这类材料进行力学分析,往往会产生很大的误差,因而必须采用拉压不同模量理论对相关问题进行求解。拉压不同模量材料非线性的本构关系使得拉压不同模量问题通常难以解析求解,发展行之有效的数值求解方法十分必要。目前确定性拉压不同模量正问题的非线性有限元方法的研究尚不充分,特别是由转轴变换形成的应力-应变矩阵对非线性计算的影响分析,而拉压不同模量反问题和不确定性问题的研究还比较少,基于灵敏度分析的拉压不同模量反问题的数值求解方法面临刚度矩阵不可微时导数计算的困难;而与文中涉及的区间不确定性问题相关的区间有限元求解方法,当参数区间较大时存在求解效率较低的问题。针对以上问题,本文开展了以下几个方面的研究工作。一、对整体坐标系下拉压不同模量应力-应变关系进行了深入分析,发现仅由应力/应变主坐标与整体坐标的转轴变换所形成的应力-应变矩阵具有奇异性,指出导致奇异性的原因是在转轴变换过程中忽略了主应变与主应力同轴这一拉压不同模量理论的基本要求,进而基于同轴条件,给出确定二维/三维拉压不同模量问题剪切模量的方法,并将其作为在应力/应变转轴变换中对同轴条件的补充。通过以上对整体坐标系下应力-应变关系的修正,提出了新的拉压不同模量问题的有限元求解模型,克服了应力-应变矩阵奇异性引起的有限元计算的收敛性困难。二、利用光滑函数建立了一个基于灵敏度分析的求解二维/三维拉压不同模量问题的数值模型。基于凝聚函数法,提出了一个可有效逼近拉压不同模量双线性应力-应变关系的光滑化本构模型,以克服其不光滑性导致的灵敏度计算困难,由此推导了二维/三维拉压不同模量有限元方程的切线刚度阵,提出了基于Newton-Raphson算法的求解拉压不同模量问题的数值方法,为不可微拉压不同模量问题的灵敏度分析以及基于灵敏度分析的相关非线性计算提供了 一个新途径。三、提出了一个基于两级灵敏度分析的拉压不同模量本构参数反演的数值方法。从光滑化的拉压不同模量本构模型出发,推导了二维/三维拉压不同模量本构参数反演相关的灵敏度计算公式,采用梯度类优化算法,建立了二维/三维拉压不同模量问题本构参数反演的数值计算模型,同时在反演过程中采用本文提出的基于灵敏度分析高效算法求解相关正问题,可从整体上提高拉压不同模量反问题的求解效率。四、基于位移的灵敏度分析,利用Taylor级数展开、区间运算、优化算法等技术,提出了全尺度拉压不同模量区间问题的数值求解方法。在本文改进的拉压不同模量有限元模型基础上,通过应变/应力状态相关的非线性分析,推导了位移对拉压不同模量本构参数的一阶、二阶导数,以及位移的一阶、二阶Taylor展开表达;结合区间算法,提出了适于参数区间较小的拉压不同模量区间问题的数值求解方法;利用位移的一阶导数和全局搜索算法,提出了基于优化的求解拉压不同模量区间问题的方法,该方法可提供严格的位移区间估计,但计算量大;此外,进一步利用二阶Taylor展开提出了两种简化计算方法,以减少基于优化的位移区间估计过程中的计算开销。五、针对不确定性参数区间较大时区间有限元分析求解效率低的问题,提出了一个基于正交多项式展开的区间有限元分析方法。采用正交多项式逼近有限元解与不确定参数之间的函数关系,并将其作为有限元解的高精度代理模型,以降低在整个区间分析过程中反复进行确定性有限元计算带来的计算开销,采用优化算法进行区间分析估计,以消除区间扩张的问题,保证区间估计的准确性;针对拉压不同模量区间问题,提出了一种迭代算法,可有效处理正交多项式展开中的非线性;为进一步验证所提方法的适用性及扩展性,本文还将其应用于考虑材料参数、边界条件和热源参数不确定性的对流-扩散传热区间和模糊问题的求解。本文通过数值算例对以上所提算法的计算精度和计算效率进行了验证,并讨论了各相关因素的影响。本文的研究工作为拉压模量不同模量正/反问题、拉压不同模量区间不确定性问题的求解提供了新的、行之有效的数值方法,进一步丰富了拉压不同模量问题的研究内容,经过进一步完善和改进,有望应用于实际工程问题。