【摘 要】
:
随着互联网的飞速发展,网民数量爆炸式增长,web应用系统面临巨大的负载压力,负载的波动性也更加显著,传统固定集群规模的web系统难以保证良好的服务质量。结合云服务的动态资源申请,弹性web系统利用能够根据当前负载水平自动增减硬件资源,动态调整系统集群规模,始终保持良好的服务质量,因此,弹性伸缩web系统成为互联网技术领域的重要研究方向。随着技术的迭代,微服务架构和容器技术成为当前web系统主流的软
论文部分内容阅读
随着互联网的飞速发展,网民数量爆炸式增长,web应用系统面临巨大的负载压力,负载的波动性也更加显著,传统固定集群规模的web系统难以保证良好的服务质量。结合云服务的动态资源申请,弹性web系统利用能够根据当前负载水平自动增减硬件资源,动态调整系统集群规模,始终保持良好的服务质量,因此,弹性伸缩web系统成为互联网技术领域的重要研究方向。随着技术的迭代,微服务架构和容器技术成为当前web系统主流的软件系统架构和部署方案。同时,微服务和容器技术具有伸缩粒度小、伸缩速度快和资源利用率高等优点,能够显著提高系统的弹性伸缩性能。所以本文基于Spring Cloud微服务框架和Docker容器技术设计弹性web系统,本文主要从三方面进行了研究:(1)研究负载预测模型。研究和改进基于自回归模型和负载序列匹配算法的组合预测模型。通过加入动态权重调整,使自回归模型能够更好地适应负载序列的多重季节性,提高负载预测准确度。通过加入关键点检测和分段模式化,提高负载序列匹配算法的相似序列匹配效率,降低了瞬时扰动对负载序列匹配的影响。(2)研究服务注册发现机制。为了提高微服务架构的弹性伸缩生效速度,本文设计了一种基于消息传播的服务注册发现机制。相比传统的注册发现机制,其改进了拓扑结构,设计了适用于服务列表同步的消息传播机制,并加入了基于逻辑环型结构的健康检测机制,既提高了系统服务发现、宕机剔除的效率,又能避免注册中心过载。(3)设计弹性web系统框架和弹性伸缩策略。设计弹性web系统的总体架构,采用系统结构分层和模块化,降低耦合度,提高开发效率;设计分布式主机监控模块,避免单点故障问题,实现高效、可靠的数据采集聚合和伸缩决策执行;设计弹性伸缩决策模块,集成多种弹性伸缩策略,设计容器调度策略,提高弹性伸缩决策效率和系统资源利用率。因此,本文针对弹性web系统进行了完整设计。分布式主机监控模块为弹性伸缩提供数据依据和弹性伸缩执行能力,负载预测模型解决何时伸缩、伸缩多少的问题,服务注册发现机制保证微服务架构web系统弹性伸缩后快速生效。最后,本文将弹性伸缩设计方案应用于危化品车辆管理系统,验证了web系统弹性伸缩效果。
其他文献
目前下肢助力服可以包括柔性助力服与刚性助力服,下肢刚性助力服多为刚性连杆构成,存在结构复杂、重量大、运行功耗大等众多缺点。下肢柔性助力服以柔性材料驱动实现助力,拥有穿戴方便,重量轻等众多优点。因此,研究下肢柔性助力服的控制策略对各个关节实现高效助力有着重要研究意义。本论文对下肢柔性助力服的控制策略进行研究,主要研究机主人辅运动下的控制策略、人主机辅随动控制下的控制策略以及随动控制参数优化。建立下肢
由于人民生活水平的逐步提高,对于吃穿住行的选择也变得以舒适、便捷为首要条件,在“行”这一方面,私家车逐渐成为大众出行的交通工具,在国庆等节假日交通流量更是成倍的增长,交通事故的发生也是呈增长的趋势。分析其原因,驾驶员在疲劳和酒后驾驶造成的事故占比最高,其中酒驾行为可以通过酒精含量探测器去管控,而疲劳驾驶更多的是依靠驾驶员自身去管控。因此,设计一款疲劳驾驶检测系统在实际生活中显得尤为重要。本文在完成
在依靠实时着色方式来着色三维场景从而得到着色效果的应用领域中,例如游戏、工业仿真以及建筑设计等领域,通常需要着色效果逼真的图像为用户提供身临其境的感觉。实时着色可采用的光照模型有很多,例如Lambert光照模型、Phong光照模型以及PBR光照模型等。为了使实时着色的效果更加逼真,在实时着色时一般采用PBR光照模型来对三维场景着色,PBR光照模型会对三维场景中模型的材质预先设定,这样在光照计算时会
作为计算机视觉领域内的主要研究方向之一,目标检测的核心目的是对每张输入图像的待检测目标进行分类和定位。自2011年以来,在深度学习的辅助下,目标检测任务在医学影像、军事运用、信息挖掘等领域取得了诸多成果。然而基于卷积神经网络的目标检测技术依旧存在诸多问题。首先现阶段常见的轻量化方法忽略了特征集合自身的特点;其次,不同尺寸的目标的检测精度参差不一,检测效果处于劣势的小目标对整体精度的测算带来很多负面
当前,人们对于对流初生短临预报的需求日益增长,随着深度学习技术的不断深入发展也使得利用深度学习方法进行对流初生短临预报成为了可能。虽然我国近几年在灾害性天气中的预报取得了长足的进展,但传统的数值天气预报方法在对流初生短临预报上仍面临较大的挑战。在本论文中,针对对流初生短临预报问题,我们尝试使用深度学习的方法提升预报模型的时效性和准确性。本论文依托中国电子科技集团公司第十四研究所所控横向项目开展工作
随着经济的增长,中国的汽车总数逐年增加,这大大增加了交通事故和交通堵塞的可能性。无人驾驶作为一种新的研究领域,期望能优化由汽车带来的一系列交通问题。无人驾驶的研究是复杂且长期的,它包含了多个方面的研究,信息采集就是其中的一个。信息采集包含了对道路中各种关键信息的检测,包括车道线、红绿灯、交通标志等。本论文以无人驾驶领域中的交通标志检测为研究课题,重点研究了基于YOLO v3改进算法的交通标志检测、
人体语义分割是一种精细的语义分割任务,其目的是在像素级尺度上识别人类图像的组成部分(如身体部位和衣服)。理解人类图像的内容,对电子商务、人机交互、图像编辑和虚拟现实等一些潜在的应用很有应用价值。目前,随着基于语义分割的全卷积神经网络的发展,人体语义分割取得了重大进展。人体语义分割与一般的图像分割相比,其难点主要有以下几个方面:首先,人体语义分割在实例场景下的数据比较复杂,涉及到多种场景,例如多人或
随着通信技术的发展,辐射源个体识别在很多领域具有广泛应用,例如电子信息对抗、频谱管理、生命科学和故障诊断等领域。然而现在的辐射源个体往往具备多种调制方式、中心频率、传输速率等特点,这将给辐射源识别带来极大挑战。在辐射源个体之间无明显差异的场景下,基于传统机器学习的辐射源个体识别算法准确率往往不够理想,而且其复杂度比较高、识别时间长,导致其很难满足现代的实际工程需要。为了解决以上问题,本文主要采用基
为让机器人在工作环境中自主地移动,定位和绘制环境地图这两项基础功能便是不可或缺的。经多年发展,基于视觉的同时定位和制图(Visual Simultaneous Localization and Mapping,VSLAM)已经有比较成熟的框架,且能为机器人提供基本的环境感知能力。SLAM(Simultaneous Localization and Mapping,SLAM)系统框架的前端是整个框架
随着新能源汽车扶持政策的持续发布,如今有越来越多的高校和企业活跃在新能源汽车市场。当前我国新能源汽车正在迈向中高级阶段,有着重解决汽车本身充电、续航、安全性等基础技术问题,转向关注与其他高技术行业的协同,充分挖掘新能源汽车的潜能。本课题以故障预测和健康管理(PHM)技术为核心思想,设计了一套结合机器学习和UDS(Unified Diagnostic Services)诊断的车载同步电机的故障诊断系