内蒙古草原区河流碳逸出与碳输移的时空变化研究--以锡林河为例

来源 :内蒙古大学 | 被引量 : 0次 | 上传用户:boge66
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
内陆河连接陆地生物圈、岩石圈以及大气圈三大碳库,其碳循环对全球气候变化有重要的影响。本文以内蒙古自治区锡林郭勒盟锡林河及其流域作为研究区,根据不同的土地利用类型(沼泽、沙地、养殖区、草地、水库、景观湖和工厂)划分布设18个样点,在2018年4月、6月、8月、10月和2019年4月、6月进行野外采样,分析环境因子、碳分压(pCO2、pCH4)、碳通量(FCO2、FCH4)以及碳输移的时空变化特征,开展环境因子与碳逸出、碳浓度的相关性分析,阐明环境因子对碳逸出与碳输移的影响机制,主要结果如下:
  1.锡林河CO2分压(pCO2)和通量(FCO2)变化呈现8月和6月高于4月和10月的趋势,河流水体CO2的时间差异性源于气温、径流量、降雨量、流速的共同影响。在不同土地利用类型影响下,pCO2和FCO2值均呈现:沙地>沼泽>养殖区>工厂>草地>水库>景观湖,陆源CO2输入、地下水补给以及人类活动影响造成河流水体CO2浓度变化,锡林河表现为CO2的“源”。CH4分压(pCH4)和通量(FCH4)变化呈现10月和6月较高,4月和8月较低,其时间差异性主要源于气温、溶解氧浓度、径流量的影响。在不同土地利用类型影响下,pCH4值和FCH4值呈现:养殖区>工厂>沼泽>沙地>草地>水库,CH4的空间差异性受水温、陆源有机质和微生物活动的共同影响。但在水库区域FCH4值为负值,表现为CH4的“汇”,原因在于CH4在水体内被氧化,导致水体CH4不饱和。综合而言,锡林河流域草地、水库和景观湖的碳逸出量占全流域水体逸出量的77.84%,其余土地利用类型影响下的碳逸出仅占22.16%,外源输入物质的差异是影响碳逸出量的主要原因。
  2.锡林河溶解无机碳(DIC)浓度和颗粒无机碳(PIC)浓度呈现:10月和6月高于8月和4月,水体中总无机碳(TIC)浓度变化的时间差异性主要源于径流影响。在不同土地利用类型影响下,DIC浓度呈现:工厂>水库>景观湖>草地>沙地>养殖区>沼泽;PIC浓度呈现:养殖区>沼泽>工厂>草地>水库>沼泽=沙地;无机碳主要来源于地下水补给、化学风化和物理侵蚀,城市建设、水利建设等人类活动也产生一定影响。溶解有机碳(DOC)浓度和颗粒有机碳(POC)浓度均为4月最高,总有机碳(TOC)浓度受温度影响较大,同时还受到径流、净初级生产力(NPP)的影响。在不同土地利用类型影响下,DOC浓度呈现:景观湖>水库>工厂>草地>养殖区>沼泽>沙地,POC浓度呈现:沙地>沼泽>养殖区>工厂>草地>水库>景观湖,河流有机碳以陆源有机质输入为主,同时人类活动对其有一定影响。TOC/TIC呈现沼泽>养殖>景观湖>草地>水库>沙地的变化趋势,在所有土地利用类型影响下该比值均小于1,表明锡林河流域河流碳以无机碳为主,外源碳输入及生物化学反应的差异是导致不同土地利用类型下TOC/TIC发生改变的主要原因。
  3.在河流碳输移过程中,碳以不同的形式进行输送。锡林河DIC浓度和DOC浓度从上游到下游呈现逐渐增大的趋势,陆源可溶性碳在河流侵蚀过程中被不断溶解带入河道,导致溶解碳浓度随着河流迁移逐渐增大,同时不同程度的人类活动对河流溶解碳的输移也产生一定影响;PIC浓度和POC浓度从上游到下游呈现波动型变化,颗粒碳随河流流动不断沉降于河流底部,加之河岸带受到不同程度人类活动的影响,导致陆地土壤的颗粒碳被带入河流,造成河流碳输移过程中颗粒碳浓度不断变化。
  4.河流碳逸出及碳浓度影响机制研究表明,碳逸出主要受pH和DO影响,溶解碳浓度(DIC和DOC)主要受pH、Sal、EC、TDS、Alk和Vw影响,水化学参数通过影响水体内的生物化学进程来控制河流碳浓度。河流碳浓度与CO2、CH4紧密相关,相关性分析表明,碳浓度的增加会促进CO2、CH4的产生,而二者过度饱和则会造成水环境改变,继而通过一系列生物化学作用反作用于碳浓度。
其他文献
自然界中,许多生物体都具有复杂的功能性结构,以适应生存的需要。对于高分子材料,为了实现高附加值的器件应用,也通常需要构筑特定的复杂形状。传统的高分子材料加工借助模具辅助成型,受模具及脱模过程影响,成型物件的形状复杂度相对较低。新兴的3D打印技术可以通过精准的增材制造方式实现无模具复杂形状的三维成型。进一步引入时间这一第四维度,还能够实现4D打印,带来更为丰富的器件变形功能。从材料设计角度,在传统的
人工合成聚合物支架具有修复骨骼和软骨创伤的巨大潜力,但是聚己内酯(PCL)等3D打印材料的细胞相容性还不足以满足需求,限制了 3D打印技术在组织工程领域的应用。低温等离子体表面处理技术集清洁、活化、涂层、杀菌等功能于一身,能够在不改变材料本身外观结构、机械性能的情况下改变材料的表面性能。基于胺基对细胞活动的积极影响,本文采用含氮低温等离子体表面改性技术来改善3D打印PCL支架的生物相容性。实验中采
介电弹性体(Dielectric Elastomer)是一种在外加电场激励下发生大变形,实现电能和机械能相互转换的智能软材料,被认为是新一代的人工肌肉,作为柔性驱动器、传感器和机械能收集器,在智能仿生、柔性机器人、航空航天、智能医疗器件、可穿戴器件等领域具有巨大的应用潜力。
  目前介电弹性体仍局限于从商业产品筛选而得的弹性体,其性能难以满足应用要求;介电弹性体驱动器的制备尚难实现定制化、连续化、自动化地加工高度集成、具有复杂结构的一体化驱动器群,限制了介电弹性体的潜在应用空间。本论文针对上述两个重
立构复合(SC)结晶是高分子结晶中的一种普遍现象,也是高分子的特殊的共晶形式。互为对映异构体(如左旋/右旋、等规/间规)的高分子在共混物和嵌段共聚物中可发生SC结晶。SC晶格中分子链间存在较强的相互作用,可形成紧密的堆积,这种结构特征赋予立构复合结晶材料更高的熔点、耐热性、机械力学性能、耐溶剂性等,SC结晶也可以使一些非晶或难结晶的高分子变为易结晶的状态。因此,立构复合结晶为高分子材料综合性能优化
低温等离子体(NTP)-催化治理挥发性有机废气(VOCs)技术,常用于治理低浓度有机废气与恶臭,可快速引发,设备在常温下运行,在有机废气治理领域具有独特的优势。在一般的NTP设备内,有机废气能够快速降解,但难于彻底降解,且可能产生副产物,包括有机小分子、O3、CO、N2O与NOx等。该副产物组成复杂,具有污染性和危害性,某种程度上限制了 NTP-催化技术的实际应用。本文首先对二甲苯的三种同分异构体
贵金属纳米颗粒因其优异的催化性能,有着广泛的应用前景,但也面临着反应条件下稳定性差的问题。利用载体的性质限制纳米颗粒的团聚,影响活性中心的结构,进而提高催化剂的活性和稳定性一直是研究者关注的热点。本论文围绕铈(Ce)基载体负载贵金属钯(Pd)催化剂的结构调控及催化性能研究展开。通过适宜的制备方法,控制Pd颗粒大小及其在铈基载体上的位置与分布,探究Pd在无空间限域、部分限域和完全限域情况下的结构演变
当今化学工业的发展重点已从通用型产品规模化生产的效能提升,逐渐转变到高性能专用产品高效、绿色制造技术的开发。聚合物材料的性能为高分子链结构所决定,其根本是组成聚合物链的单体序列结构。因而精确控制单体单元在聚合物链中的连接顺序是定制聚合物链结构的关键。为此,本文将半连续聚合方式与可逆加成-断裂链转移自由基聚合(Reversible addition-fragmentation chain trans
高性能数值计算是先进飞行器结构轻量化设计的重要基础。所谓高性能,即实现精度与效率的综合平衡。本文将等几何分析与边界元法有机结合,建立了求解三维弹性问题的等几何边界元法,实现了设计模型和计算模型的统一,保证了几何信息完整性,消除了网格划分过程,有效提高了计算模型几何精度。在此基础上,本文针对等几何边界元法计算效率问题,着重研究了等几何边界元快速计算方法,提高了等几何边界元法的实用性。
  针对结构设计过程中演化状态计算效率问题,提出了降阶等几何边界元计算方法。基于本征正交分解,建立了先验降阶策略,实现
气膜冷却是先进燃气轮机涡轮叶片中经常应用的外部冷却方法,冷却结构设计中通常在叶片前缘、吸力面及压力面等位置布置多排气膜孔。为了衡量多排气膜的冷却效果,工程应用中可以利用已知的单排气膜冷却效率数据并采用叠加预测方法来进行估算。但受到实际工况的限制,叠加预测结果精确度不高、偏差较大。因此,了解气膜间的相互作用机理,得到多排气膜冷却效率叠加预测准确性规律,有利于提供准确的涡轮叶片热边界条件,对涡轮叶片的热分析及冷却结构设计有着重要的意义。
  本文重点研究了双排离散气膜孔后射流间的相互作用规律,针对影响冷
本文以斜爆震发动机在高超声速推进领域的应用为背景,主要通过理论分析、数值模拟和实验相结合的方法,对超声速气流中的斜爆震波的流场结构和驻定特性进行了系统研究,特别是对湍流状态下以及边界层影响下的斜爆震流场结构和驻定特性进行了探索。
  分析了无粘条件下斜爆震波的两种过渡区结构的形成机理并建立定量判别指标。提出斜爆震波后和诱导斜激波后区域的状态差异是不同过渡区结构形成的直接原因。当两个区域状态差异较大时,状态匹配需要有激波才能实现,从而形成突跃型过渡区结构;而当状态差异较小时,则仅需弱压缩波即可完成状态