【摘 要】
:
近年来,随着深度学习的发展,其在各个领域都应用广泛。但在实际中,深度学习仍存在许多问题。首先获取一个性能良好的深度学习模型需要大规模的标记样本对其进行训练,但是给样本做标注的过程既浪费时间又浪费劳动力。其次,深度学习模型使用当前场景下的数据进行训练和测试的效果较好,但是当测试数据与训练数据存在分布差异时,深度学习模型的泛化能力明显下降。这就导致要花费大量人力物力重新标注样本,并对模型再次进行训练。
论文部分内容阅读
近年来,随着深度学习的发展,其在各个领域都应用广泛。但在实际中,深度学习仍存在许多问题。首先获取一个性能良好的深度学习模型需要大规模的标记样本对其进行训练,但是给样本做标注的过程既浪费时间又浪费劳动力。其次,深度学习模型使用当前场景下的数据进行训练和测试的效果较好,但是当测试数据与训练数据存在分布差异时,深度学习模型的泛化能力明显下降。这就导致要花费大量人力物力重新标注样本,并对模型再次进行训练。因此,如何利用相关领域学习的知识对当前场景的数据进行知识迁移和复用成为当今研究的热门。针对训练数据需求量大以及分布差异的问题,研究者们提出了域适应的概念。域适应是迁移学习的一个分支,目的是解决数据集分布不同但任务相同或者相近时的迁移问题。其中,生成对抗式域适应方法取得了较好的效果,其通过对抗训练的方法对源域和目标域的特征分布进行对齐。然而,由于生成对抗网络中的判别器只是个二分类器,输出只有0或1,没有充分考虑到源域和目标域的类别特征信息,在整体特征对齐的过程中容易产生类别特征误匹配,从而出现负迁移。针对类别特征误匹配的这一关键问题,本文提出了变分领域自适应算法,该算法由预训练框架和生成对抗式域适应框架组成。首先,通过有标签的源域数据训练自动编码器-分类器结构,然后通过高斯混合模型提取源域各个类别样本的均值和方差,生成源域类别特征的概率分布。其次在域适应阶段,一方面使用生成对抗网络缩小源域和目标域之间的整体特征差异;另一方面,将类别对齐问题转换成后验概率逼近于先验概率的问题,因此将源域类别特征的概率分布作为目标域特征的先验概率,这样就将源域携带的类别信息赋予到目标域特征生成过程中,目标域就携带有类别特征信息,并且逼近于源域,达到类别对齐的目的。最后,使用源域的分类器对目标域样本进行分类。通过本方法,减少了源域和目标域类别之间的误匹配,缓解了域适应过程中的负迁移问题,提高了分类的准确率。本文提出的算法在digits数据集上的平均准确率达到97.8,在Office-31上平均准确率为94.5%,均高于主流算法。
其他文献
车辆检测系统作为智能交通系统不可缺少的一环,对于协助科学引导车流和维护公共交通安全具有重要意义。目前基于计算机视觉的道路车辆检测技术已得到广泛应用,道路上架设的视频监控系统已经实现道路全方位监控,监控设备采集的大量道路车辆视频为车辆检测技术的研究提供了数据基础。但在实际情况中,受天气、监控设备参数、车速等影响,采集的道路车辆图像质量参差不齐,低质量的图像会影响深度学习网络的学习能力,进而使得车辆无
随着石油勘探范围的扩大以及技术手段的提升,勘探采集的工区地震资料逐年递增。在地震数据处理流程中,庞大的数据量为人工拾取速度谱带来极大负担,导致速度谱的拾取过程变得极为耗时,亟需计算机辅助资料处理技术的变革。为解决速度谱拾取的耗时问题,速度谱拾取的自动化成为现阶段研究热点之一。现有的速度谱自动拾取算法可分为半自动化速度谱拾取算法与自动化速度谱拾取算法。半自动化算法主要包括蒙特卡罗法、非线性函数优化法
近年来,随着我国经济的快速发展和交通的日益便利,我国汽车保有量呈指数级增长,行人出行的风险也在逐步上升。在我国城市道路交通监控系统中,有大量实际的城市道路交叉口路段监控视频。通过交叉口断面监控视频,可以了解道路交通和路况信息。但是它无法实时判断道路的交通状态,使拥堵等异常事件演变成更为复杂的事件,最终导致交通压力急剧上升,从而影响正常交通。因此,本文针对我国城市道路交通监测压力愈加严重的形势结合城
同时定位与构图(Simultaneous Localization and Mapping,SLAM)是指运动物体在环境中根据传感器的测量信息,解算自身位姿时,同步构建环境地图的过程。SLAM作为导航和感知的关键技术受到了广泛地关注,已经在航空航天、交通运输、物流仓储等领域得到应用。目前,如何实现高精度、强自主、抗干扰能力强的定位与构图是SLAM技术研究的重点和难点问题。针对传统SLAM方法中自主
随着国内社会老龄化程度地加重,人体健康问题也越来越突出并逐渐引起重视。常言道“人老腿先衰”,膝关节的健康状况紧密联系着人们的运动机能从而影响日常生活。传统穿戴式评估膝关节健康的方式存在依赖医学设备、穿戴复杂、非医务人员操作困难等问题。针对传统监测手段缺陷,利用光学原理提取关键信息并建立膝关节运动模型,开展膝关节健康监测的非接触式技术研究具有应用价值和研究意义。论文的主要工作和创新性如下:(1)基于
心率是衡量人体健康状况的重要指标之一,非接触式心率测量方法相比于接触式心率测量方法具有一定的优点。非接触式心率测量依赖光电容积脉搏波描记法(IPPG),通过摄像头拍摄人体皮肤提取血液容积脉冲(BVP)信号,实现心率的测量,适用各种复杂场景。在非接触式心率测量中,盲源分离是一种广泛采用的提高心率测量精度的手段,开展联合盲源分离的非接触式心率测量技术研究具有重要意义。论文的主要工作及创新如下:(1)针
随着大跨度、超高层建筑的发展,以及装配式建筑的兴起,越来越多的建筑采用钢结构形式。其中冷弯薄壁型钢因具有质量轻、截面型式多样及拼装便捷的优点,得到日益广泛的应用。而拼合截面冷弯薄壁型钢组合柱则是通过铆钉将C型钢和钢板拼合到一起并灌注混凝土,增强了组合柱的承载能力和稳定性。本文采用试验研究和理论分析相结合的方法,针对拼合截面冷弯薄壁型钢组合柱的力学性能进行研究,为该类构件在工程中的应用提供支撑。通过
近年来,网络化的状态估计因具有低成本、远距离传输、高可靠等特点被广泛应用于智慧交通、物联网等领域。目前,网络化的状态估计面临通信带宽有限、量测数据丢失和存在外部输入等问题。传感器能量有限、器件老化、网络拥塞等原因易引起数据传输过程中能耗高、量测数据丢失与不连续等问题,导致状态估计性能下降。现有网络化状态估计方法大多基于高斯分布建模量测噪声,但在实际系统中,由于量测野值、建模误差等原因导致量测噪声呈
随着地铁数量的不断增加,地铁车站工作人员和乘客的舒适性和安全性越来越受到人们的重视。对于地铁站内的环境状况进行分析和预测已成为决策和行动的重要依据。传统的点预测方法的输出结果是未来一段时间内的环境参数的具体数值,如果预测模型输出的结果是基于不同置信度的概率值而不是精确数值的话,可能更接近实际情况的要求。因此,本文提出了基于自回归长短时记忆(LSTM)神经网络的地铁车站环境参数概率预测方法,对地铁车
随着人工智能的崛起,人机交互操作系统已经在很多领域广泛应用,尤其是要求精准度和高危的领域,例如:空中交通管理系统,飞机驾驶系统和深海潜行系统等。操作人员在执行任务时需要具备良好的工作状态,分析脑力负荷水平,可以判断其脑力负荷状态,保证人员安全和任务有效执行。因此通过判断操作人员脑力负荷状态并对其进行准确辨识很有意义。常用的脑力负荷辨识方法是基于脑电信号(electroencephalogram,E