【摘 要】
:
在电解水制氢过程中,位于电解池阳极上的析氧反应(OER)由于其复杂的多电子反应过程所导致的缓慢动力学特征,严重制约着电解水反应的整体效率。因此,通过制备高电催化活性、低成本和优良稳定性的电催化剂来降低过电势,提升OER效率,对促进电解水领域的发展具有重大意义。本论文致力于开发高性能的过渡金属电催化剂并将其应用于OER,通过构筑界面结构与合理设计配位位点等策略,有效地提升了电催化活性。主要内容包括以
论文部分内容阅读
在电解水制氢过程中,位于电解池阳极上的析氧反应(OER)由于其复杂的多电子反应过程所导致的缓慢动力学特征,严重制约着电解水反应的整体效率。因此,通过制备高电催化活性、低成本和优良稳定性的电催化剂来降低过电势,提升OER效率,对促进电解水领域的发展具有重大意义。本论文致力于开发高性能的过渡金属电催化剂并将其应用于OER,通过构筑界面结构与合理设计配位位点等策略,有效地提升了电催化活性。主要内容包括以下两个方面:1.通过简单可行的两步合成方法,将Fe3O4和CoO耦合界面纳米结构负载在碳纳米管(CNTs)上,制成Fe3O4/CoO CNTs电催化剂。该电催化剂在碱性介质中对OER具有优异的电催化活性,在10 mA cm-2的电流密度下过电势为270mV,Tafel斜率为59 mV dec-1。同时其还具有良好的电化学稳定性,在长达45小时的计时电流测试中电流密度没有出现明显的衰减现象。之后借助一系列表征手段,特别是X射线光电子能谱(XPS),深入探究了Fe3O4/CoO CNTs具有优异OER性能的原因。主要是Fe3O4和CoO之间存在的耦合界面纳米结构,改善了电子结构,增加了催化活性位点的数量,产生了大量的氧空位。2.采用一种简便的电化学-热解策略,通过在泡沫铜(CF)上原位结晶,合成了具有N-Ni-S配位位点的NiS/C3N4复合材料。通过表征,特别是同步辐射X射线吸收精细结构(XAFS),证明N-Ni-S配位模式完全形成。电化学测试表明NiS/C3N4具有良好的OER性能,在10 mA cm-2的电流密度下具有334 mV的低过电势,Tafel斜率为45 mV dec-1,并且在碱性介质中可以维持50小时的电化学稳定性。NiS/C3N4良好的电催化性能主要来源于N-Ni-S配位位点,可以提供丰富的催化活性位点,促进电荷转移,增强导电性。此外,通过调节电沉积电势和电聚合时间这两个重要的实验参数,深入探讨了催化剂的形貌与电催化性能之间的关系。
其他文献
计算化学生物学和计算机辅助药物设计技术的快速发展,为实现药物分子的靶向治疗提供了理论指导与技术支持。本文中,采用计算模拟方法探究了硝羟喹啉选择性抑制溴结构域和超末端结构域(BET)家族蛋白的分子机制、硝基还原酶(NTR)荧光探针的作用特点、铼纳米颗粒与生物分子间的吸附机理以及合理构建载药铼纳米平台并阐述药物的靶向释放机制,不仅在分子水平上揭示了肿瘤的诊疗过程中小分子抑制剂和荧光探针分子结构与活性之
随着城市化、工业化加快,环境、能源问题愈发明显。太阳能绿色且清洁,若能得到有效利用,这些问题就能被控制。光催化材料可以通过光解水的过程产氢产氧,将二氧化碳还原,缓解温室效应,以及将污染物分解。自1972年起,全世界的科研人员开始注意到光催化剂的制备及合理开发。氧化亚铜带隙较窄,通常为2.0 e V左右,可以吸收利用较宽范围的光子,其常见研究应用包括光解水、降解污染物。但常见的形貌为立方体状的Cu_
环境恶化和能源短缺已成为人类面临的两大难题,而光催化作为一种新型友好的技术手段,可以完美解决上述难题。且光催化技术有着其他方法不可比拟的优势,因此被许多科研工作者广泛研究。尽管光催化技术的运用不需大量的人力物力,但研究表明限制其实际应用的主要影响因素是光催化剂的光吸收能力和内部光生载流子的重组。于是科研工作者也尝试了许多改性方法用于解决这两大瓶颈,比如缺陷工程、构筑异质结以及引入助催化剂等,从而使
利用廉价易得的烯烃作为结构单元来构建新的化学键是有机合成中一种有力且完善的方法。其中,过渡金属催化的烯烃的双官能团化是制备复杂分子最高效的合成方法之一,也可以用来形成一些新的C-C键和C-N键,在有机合成中具有重要的意义。传统的合成方法往往条件较为苛刻,需要用到昂贵的催化剂以及配体,同时面临官能团容忍性较差等缺点。所以,使用廉价过渡金属催化剂实现烯烃的选择性双官能化一直以来也是科研工作者们研究的重
羟吲哚类化合物是一类非常重要的杂环结构,其广泛存在于天然产物和生物活性分子中。尤其是3,3-二取代羟吲哚,因取代基不同可展现出不同的生物活性。因此发展简便、高效的合成方法实现不同官能团化3,3-二取代羟吲哚的合成具有重要的意义。相对于直接对羟吲哚骨架进行官能团化的方法,利用多米诺Heck环化的方法一步构建3,3-二取代羟吲哚的同时实现其官能团化过程具有较高的步骤经济性和原子经济性。在本论文第二至四
荧光纳米团簇具有优越的光学性能和生物相容性,在荧光传感、定量分析、生物医学等领域具有广泛的应用前景。近年来,贵金属纳米簇、普通过渡金属纳米簇、非金属纳米簇等荧光探针得到了不断的发展,高性能、低成本的纳米团簇荧光探针的制备与应用成为了本领域的研究热点。本论文通过简便、快速的方法合成了荧光性能良好的金属纳米簇和碳纳米簇,分别实现了对硫醇污染物和抗坏血酸的灵敏检测。主要研究内容如下:第一章:综述了国内外
土壤团聚体的形成与稳定性在农药的吸附、迁移行为中扮演重要角色。受极端环境与不合理耕种施肥方式的影响,有些地区土壤团聚体遭到破坏,影响到作物产量安全。因此,修复土壤结构、降低农药的迁移非常重要。海藻酸钠(Alg)是天然无公害的多糖,易于凝胶化形成三维凝胶网络结构、具有较强的吸附性能可用于促进土壤团聚体的形成及增强农药的吸附行为。本论文利用高效、高原子利用率的四组分Ugi缩合反应将辛胺键、四苯乙烯基引
水系锌离子电池作为新型二次电池具有很好的发展前景,其中锌金属作为水系锌离子电池负极材料,具有成本低、容量大、氧化还原电位低和环保等优点。但锌金属负极在电池充放电过程中出现诸如枝晶生长、钝化、析氢和形变等问题,会引起电池短路,这严重地影响了水系锌离子电池寿命。锌枝晶生长与氧化锌钝化层形成密不可分,同时镀锌基底形核位点数量和均匀程度、充放电时面电流密度、Zn(OH)_42-和Zn2+浓度等因素对锌枝晶
随着化石能源的枯竭和人们对于环境的日益关注,清洁能源(例如太阳能、风能和潮汐能等)在近些年来得到了全社会的广泛青睐。然而,一方面大多清洁能源存在分布分散和随环境变化的周期变化,需要储能装置进行存储和转运;另一方面新能源汽车和智能化电子设备的快速兴起,需要储能装置进行便携式供电。这些能量存储需求给储能器件(设备)提出了更高的要求。超级电容器就是在这种背景下应运而生,因其具备多方面的优势,如超快充放电
随着核能的发展和核技术的应用,人类对铀资源的需求日益增长,已知海水中铀的储量是陆地资源的数千倍,因此,从海水中提铀就成为另一条获取核燃料的重要途径。吸附法由于具有操作简单、高效和成本低廉的优点,是目前海水提铀最有效的方法。氧化石墨烯(GO)作为最具应用前景的二维材料之一,它可以层层堆叠,具有较大的比表面积,可以用作吸附材料,同时这些堆叠所形成的通道,可以作为不同分子、离子或者有机物的传输筛分通道。