论文部分内容阅读
膜计算理论与应用研究,为移动机器人自主行走中的智能规划、决策与控制等关键问题的解决提供了新途径。目前,膜计算的理论研究成果丰硕,而急需应用研究领域的突破。抽象于生物细胞的膜系统是一种仿生并行分布式计算模型,具有强大的信息处理与计算能力,适于求解移动机器人的运动规划与控制问题。本文针对移动机器人自主行走所面临的三类关键问题,结合膜计算模型的特点,分别设计了基于膜优化的路径规划算法以及多种行为膜控制器,用于提升移动机器人自主行走时的环境适应能力。本文首先描述了膜计算模型信息处理的特点,剖析了膜系统适合于解决移动机器人自主行走关键问题的原因。另一方面,在综合分析一般智能体混合式体系结构与膜系统构造的认知系统的共性基础上,构建了适合不同类型膜系统应用的自主移动机器人混合控制体系结构;分层次探讨了可以利用膜计算模型解决的具体应用问题,为后续膜系统与移动机器人自主行走控制方法相结合的研究工作,奠定了膜计算应用框架基础。针对智能路径规划方法常存在收敛慢、局部探测能力弱,难以兼顾效率与效果的问题,通过分析有效路径优化过程中解个体节点的演变规律,提出了一种维度可变的粒子群膜优化算法。充分利用动态膜结构的膜溶解、膜通信、膜转运等规则,将点修复算法、平滑算法以及移动方向调整等辅助功能算法有机结合,实现寻优粒子种群的维度变化与信息交流。利用多维度种群具有更广泛探测能力的特点,以提高搜索效能。另一方面,定义的多个目标的评价与决策方法,在加快算法收敛与提高适应性的同时,可以产生更合理的路径。针对非完整约束的轨迹跟踪过程中,移动机器人常面临外部扰动、参数剧烈变化、难以精确建模等问题,设计了运动学模型结合动力学模型的两层结构轨迹跟踪控制器。在外层运动学层面,结合Lyapunov稳定性理论、滑模控制方法以及Backstepping技术,分段设计了前馈与反馈相结合的运动学跟踪控制律,为动力学模型提供了更精确的参考路径输入。在内层动力学层面,利用膜系统将神经网络PID的控制模型规则化,同时利用酶变量灵活多变选择规则执行的特性,在膜内实现神经网络与专家知识相结合的参数自学习过程,这种灵活切换方式可使参数间的影响减弱,达到有效控制强时变扰动的效果。针对基于行为的实时导航过程中,存在易振荡与易陷入最小值陷阱等问题,分别设计了局部环境模式分类器、多行为选择策略与多行为融合膜控制器。考虑到自主机器人探索未知环境时,机器人对所处环境理解越精确越有利于做出正确行为响应,但传感器易受噪声影响的情况,定义了二值化的多种局部环境模式,将膜系统引入到环境分类器设计中,实现环境模式的准确快速识别;为便于多行为的融合,根据机器人物理特性分别设计了目标趋向、避障、随墙、通道穿越等行为控制律;提出能摆脱局部最小值陷阱的多行为融合策略,所设计的多行为融合膜控制器能够帮助移动机器人成功走出复杂的迷宫环境,自主行走性能优良。搭建了基于膜控制器的移动机器人实验平台。多组实验验证本文提出的膜控制器在移动机器人自主行走中具有满意的运动规划与运动控制性能。