【摘 要】
:
本文基于序列推荐的思想,针对推荐系统存在的推荐准确度较低等问题,在推荐模型的项目嵌入阶段与序列建模阶段进行了改进以提高推荐的性能,具体问题与改进方法阐述如下。在对用户交互序列的处理中,现有的推荐模型在嵌入时仅仅关心用户的交互项目的顺序,忽略了用户交互序列项目属性与内容的相关性,对此本文在项目嵌入阶段引入了相关领域的知识图谱来获得辅助信息,通过丰富用户交互信息的形式改进了常规的嵌入方法。在实验中与先
论文部分内容阅读
本文基于序列推荐的思想,针对推荐系统存在的推荐准确度较低等问题,在推荐模型的项目嵌入阶段与序列建模阶段进行了改进以提高推荐的性能,具体问题与改进方法阐述如下。在对用户交互序列的处理中,现有的推荐模型在嵌入时仅仅关心用户的交互项目的顺序,忽略了用户交互序列项目属性与内容的相关性,对此本文在项目嵌入阶段引入了相关领域的知识图谱来获得辅助信息,通过丰富用户交互信息的形式改进了常规的嵌入方法。在实验中与先前主流的方法和未加入数据集相关领域知识图谱的方法进行了比较,结果证明提高了嵌入方法的性能。在序列建模阶段,现有模型大部分使用循环神经网络(Recurrent Neural Network,RNN)对于用户交互序列进行建模,与循环神经网络相比,时间卷积网络(Temporal Convolutional Network,TCN)的并行性较好,对比循环神经网络存在结构上的优势,并且在自然语言处理领域已经证明有着不错的效果。在用户的近期交互阶段,偏好变化较为频繁,时间卷积网络因为其结构上的优势,更有益于用户的近期交互建模。所以本文引入时间卷积网络对于用户近期交互序列进行建模来提高近期偏好获取的准确性。除近期阶段建模的问题之外,针对没有充分考虑用户交互序列导致推荐准确度较低的问题,本文在考虑用户近期交互序列的基础上,也在建模过程中加入了用户长期交互序列,充分考虑到了用户各阶段的交互序列来提高推荐模型的性能。同时考虑到用户的长期与近期偏好是有益的,但是简单的对于用户两个阶段的偏好相结合并不会起到很好的推荐效果,本文在同时考虑用户的近期偏好与长期偏好的基础上,基于注意力机制动态地融合了用户的近期与长期两个交互序列的偏好,从而提高了推荐的准确性。综上所述,针对以上提到的目前推荐方法的不足,本文在嵌入阶段引入相关领域的知识图谱来丰富交互信息,引入时间卷积网络以提高用户近期偏好建模的准确度,同时在模型最后加入注意力机制来动态融合用户各阶段偏好,从而提高了推荐的性能。最后,在实验环节中,在电影与音乐领域的公共数据集Movie Lens与Last FM上进行了实验,结果证明提出的模型发挥了作用,起到了较好的效果。
其他文献
铁磁性材料零部件被广泛地应用于大型机械设备、航天航空、管道运输等领域,铁磁性材料零部件在长期的服役过程中,由于受运行环境、制造工艺和使用方式等因素的影响,易产生表面或内部不同程度的损伤,影响设备运行情况及使用寿命,留下安全隐患,甚至造成工业事故。为此,对设备的铁磁性材料零部件及时地进行非接触、非侵入的检测变得十分重要。为了构建非接触、非侵入的缺陷检测模型,本文利用无损检测技术中的红外热成像技术,建
近年来,随着物联网、微电子技术和无线充电技术的飞速发展,无线传感器网络逐渐在工业应用中发挥重要作用。可以由无线充电器提供能量补充的传感器网络称为无线可充电传感器网络(Wireless Rechargeable Sensor Networks,WRSN),通常它由数量庞多的传感器节点组成,用于监测外界环境、数据传输、边缘计算。传感器节点通常由微电子组件和蓄电池构成,而能量有限的电池是制约WRSN寿命
周期性车辆路径问题(Periodic Vehicle Routing Problem,PVRP)是传统车辆路径问题的一个重要拓展,主要是为了满足客户多次配送服务的要求,优化配送周期内的客户组合和配送路径。目前,环境与能源问题的日益严峻,每个国家对环保的要求越来越严格。因此,考虑燃油消耗和碳排放等因素的绿色周期性车辆路径问题(Green Periodic Vehicle Routing Proble
节点被捕获是无线传感器网络(Wireless Sensor Network,WSN)内部攻击的第一阶段攻击,适宜的检测方法能够更好的保护WSN网络安全。在该论文提出的检测方法中,决策节点通过邻居节点交互信息得到决策,并将得到的决策由多跳路由发送给基站,基站将被认定已捕获的节点进行隔离。对于休眠机制问题,很多检测方法使用的是同步休眠而非异步休眠,甚至有些方法并不考虑休眠的问题;对于通信结构问题,现有
近几年,视网膜图像的血管分割一直是医学领域的研究热点,精确的分割视网膜血管是很多疾病诊断的重要前提,常常被作为诊断视网膜血管病变、糖尿病、高血压、青光眼的重要手段。传统的眼底血管分割是由医生手动完成的,但存在耗时长、过度依赖医生专业性的问题,随着图像处理的快速发展,视网膜自动分割取得了一些进展。然而,眼底血管图像存在数据集少、血管大小尺寸不一和病变背景干扰的问题,加大了图像分割的难度,也导致了视网
太阳耀斑是一种剧烈的太阳活动形式,强烈太阳耀斑引起的X射线增强会导致短波无线电衰减,从而影响无线电通信系统、全球定位系统、卫星和航天员的安全,造成大量的经济和商业损失。因此,建立太阳耀斑预报模型对空间天气预报具有重要意义。耀斑指数是对全日面耀斑活动强度的一个量化描述指数,是太阳辐射研究领域中最重要的太阳活动指数之一。相较于其他的太阳活动指数序列,耀斑指数时间序列的突发性更强,预测难度更大。耀斑指数
近年来,云计算相关技术不断发展成熟,云计算技术的应用领域也越来越广泛,云计算技术逐渐成为IT行业的主流技术。云环境具有动态性、复杂性、共享性和大规模等特点,在复杂的云环境下,如果运行数据存在异常,将会影响云环境的正常运行,给云环境的可用性和稳定性带来巨大挑战。为了保证云环境可用性和稳定性,国内外相关专家对云环境下运行数据的监测和异常检测以及预测方法进行了深入研究,且提出了相关运行数据的监测框架和异
磁共振成像(Magnetic Resonance Imaging,MRI)在治疗检测和医疗诊断等领域的应用很广泛,并且没有电离辐射危害。然而,过长的扫描时间成为了MRI最主要的缺点。因此,为了在保证MRI质量的同时提高成像速度,本文研究利用深度学习的网络模型,设计有效的MRI网络模型来提高磁共振图像的重构性能。本文的主要研究内容如下:(1)采用Calgary-Campinas的脑部原始数据,并对数
深度学习是人工神经网络的一个分支,这个概念一提出就引起了社会各界的高度关注,掀起了研究热潮。随着社会高度智能化发展,智能安防、刑侦、无人超市等领域对行人重识别技术的需求尤为明显。在这些行业发展和社会需求的促使下,基于深度学习的行人重识别迅速成为计算机领域的热门话题。行人重识别通过给定的查询行人图像进行跨摄像机检索,找出与查询身份相匹配的行人。然而,由于受到不同视角下的背景、光照等因素影响,采集到的
物流业是关系国计民生的重要行业,是一个国家综合国力的重要体现。我国物流业近年来发展迅速,但与发达国家相比,仍存在成本高、效率低的问题。车辆路径问题(Vehicle Routing Problem,VRP)的研究是解决该问题最有效的途径之一。多车场车辆路径问题(Multi-depot Vehicle Routing Problem,MDVRP)是VRP的一类拥有广泛应用场景的重要扩展问题,因与现代物