无线传感器网络分布式定位算法研究

来源 :桂林电子科技大学 | 被引量 : 0次 | 上传用户:e3e45r
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,无线传感器网络(Wireless Sensor Network,WSN)技术得到了广泛研究,其在军事、医疗、环境等领域得到了广泛应用。其中,节点定位技术是WSN的关键技术之一。受到WSN中传感器节点部署成本、资源、部署环境等因素的限制,对每个节点都安装定位模块进行定位是不切实际的。因此,有效的方法是对少量节点安装定位模块,利用这些节点的位置信息实现整个WSN的定位。现有的诸多定位算法中,集中式定位算法需要将定位所需信息送往中央处理器进行处理,而后将定位结果再送回相应节点。因此,此类算法计算复杂度高,通信代价大,难以扩展。分布式定位算法不需要中央处理器,节点自身完成相应计算,节点之间相互通信获得位置信息。此类算法降低了成本,且计算复杂度低,易于扩展,但存在利用信息较少,定位精度不高的问题。为此,本论文主要对大规模WSN中节点分布式定位算法进行了研究。(1)WSN中节点定位问题可以归结为高度非线性非凸的优化问题。该问题在大规模WSN中由于维度过高,集中式定位算法难以求解。为此,本文提出了一种基于改进牛顿法的分布式定位算法。该算法包括网络划分和分布式算法,首先根据节点位置和节点之间的距离信息,将WSN划分为若干个重叠的子区域,并将子区域的定位问题归结为无约束优化问题,然后使用分布式算法估计子区域中的节点位置并进行局部融合。在位置估计时,将三边法的定位结果作为初始值,并将Hesse矩阵修正为正定的,进而使用改进牛顿法迭代求解。仿真结果表明,与已有算法相比,该算法易于扩展、定位精度高,能满足大规模WSN中节点定位需求。(2)为了在保证定位精度的同时,进一步降低分布式定位算法的计算复杂度,本文提出了一种基于Barzilai-Borwein梯度法的分布式定位算法。首先将WSN构成的无向图分解为部分重叠的子图,重新构造优化问题,进而将优化问题分解为子问题进行迭代求解。每步迭代包含两步,首先将极大似然估计法的定位结果作为初始值,使用Barzilai-Borwein梯度法估计出子图中节点的位置,该梯度法具备收敛速度快,计算复杂度低的特点,然后对部分重叠的子图进行融合平均。仿真结果表明,与已有算法相比,该算法易于扩展、鲁棒性好,计算复杂度更低、定位更准确,可有效用于大规模WSN中节点的定位。
其他文献
通常,消费者在线购物时会根据商品的专有名词以及一些属性信息对其进行检索,用户在浏览商品时也会关注于商品属性方面的信息特征,因此分析出商品信息中关于特定属性方面的观点信息对提升商品的服务与质量是有必要的。细粒度的用户观点对商品的认知具有引导作用,可以影响消费者的购物决策,同时也为企业了解产品的属性特征提供了必要的信息反馈,具有重要的参考价值。本文的主要工作围绕着商品的观点分析展开,意旨分析出更详细、
目前,对海量数据的研究主要集中在对数据的存储、检索、挖掘和分析等方面,并且基本上都是基于某一特定的应用场景以及特定的数据源而进行的研究。互联网飞速发展和广泛应用的今天,短时间内就会有大量的、各种各样的数据产生,这些数据有表格、文本、音频、视频等,数据的存储格式也各不相同、各有特点。现实中,也会因为某种需要,要求对这些多源异构数据进行集中统一存储管理,而同源同构数据下的技术方案和算法并不能直接用于对
近年来,随着我国高等教育的迅猛发展,大学毕业生也日益增多。尽管就业岗位的数量在不断增加,但我国劳动力市场的供需失配的结构性问题依然非常严重。如今,随着互联网的普及,网络招聘成为企业招聘人才的主流方式。招聘信息中列出的技能词为实时、准确地了解企业对人才的需求提供了可能。本文将技能词抽取任务转化为序列标注问题,借鉴了命名实体识别或者术语抽取的方法。然而,由于中文的语义和上下文情形的复杂性以及手工标注成
人体动作捕捉技术一直是计算机视觉和计算机图形学研究的热点之一,这项技术被广泛应用于机器人、虚拟现实、影视动画、步态康复和运动分析等各项领域。现有的动作捕捉方法大多数都需要为实验者佩戴相关的动作传感器,设备昂贵并且对采集的环境有较高的要求;其它的一些方法则是利用数据集驱动人体建模完成三维动作的重建,这种方法过于依赖数据集的特征,扩展性较低。因此本论文提出通过深度学习和双目立体视觉相结合的方法实现人体
随着大规模集成电路的发展,网络通信数据量的激增,对高速数据传输系统的要求越来越高,传统的基于电互连的片上网络由于集成过多的IP核会导致高功耗、易受电磁干扰、高传输时延等问题,限制着未来多核处理器的发展。相对比电互连片上网络,光互连片上网络由于带宽大、传输速度快、不易受电磁干扰等优点,逐渐受到科研院校的关注,但在数据量小、路由距离较近的情况下,光互连片上网络的优点无法弥补光电转换过程和链路配置带来的
情感是人类表达个体思想的主要方式,在日常生活中占据着非常重要的地位。情感识别是当前人工智能和人机交互领域的重要研究内容,被众多研究人员广泛关注。情感识别的早期研究大多基于单一的模态,随后发现采用单一的模态进行情感识别具有很大的局限性,而不同模态之间提取的情感特征在一定程度上能够互补,通过对不同模态融合进行情感识别,能够进一步的提升识别精度。语音和人脸表情是人类表达情感最快捷、直接的方式,成为了情感
近年来,汽车逐渐成为人们生活中新的多媒体中心,与汽车相关的智能交通、车联网等新技术也被陆续推广开来,这使得车载通信系统正向着宽频带多频带的方向发展。因此,拥有更宽的频带,覆盖多个通信频段的天线成为汽车通信的一个研究重点。本文以电磁偶极子为基础,围绕具有宽带、多频带的天线展开研究。论文的主要研究内容和成果如下:1.基于电磁偶极子的宽带、多频带双极化天线研究。通过研究电磁偶极子的辐射原理以及天线辐射片
微型水下航行器在海洋资源勘探、生态监测、民事救援及军事侦查等方面可发挥重要作用。模仿水生生物设计的水下航行器具备生物一些运动及形态特性,除具有体积小、成本低、便携等特点外,还具有推进效率高、机动性强、噪声低等特点。因此,针对微型水生生物开发相应的微型水下航行器具有重要意义和实用价值。金边龙虱具有优异的游泳能力且能在陆地较快爬行,是设计微型潜水机器人的绝佳素材。龙虱的身体结构与其游泳特性有密切关系,
大规模多输入多输出(Multiple Input Multiple Output,MIMO)技术在提高系统性能方面具有显著的成效,毫米波为现代通信技术提供大量未授权的频谱资源,并且,由于毫米波较短的波长,可以使天线阵列微型化,极大的降低了成本损耗。将大规模MIMO技术与毫米波结合,不仅可以有效的提升系统的传输速率,而且还可以极大的增加系统的传输带宽。在毫米波大规模MIMO系统中,混合预编码技术可以
在音视频会议、机器人及语音识别等应用领域中,阵列信号处理技术起到了举足轻重的作用。语音定位本身属于阵列信号处理技术领域的一个重要组成部分。在噪声较大及混响较强的实际环境下,常用声源定位算法的鲁棒性较差。相位变换加权的可控响应功率定位算法(SRP-PHAT)具有一定的抗混响能力,但抗噪声能力较差且算法的计算量较大。为了减小SRP-PHAT定位算法的计算复杂度,提升强噪声、高混响环境下声源定位算法的性