论文部分内容阅读
群体智能是指众多行为简单的个体在相互作用过程中涌现产生的整体智能行为。群体智能由于原理简单、容易实现、全局搜索能力强的特点,目前已经成为计算机、工程、管理、经济、生物等学科的研究热点和前沿领域。粒子群算法(Particle Swarm Optimization, PSO)是群体智能中较新的一种优化方法,其搜索过程基本不利用外部信息,仅仅以适应度函数作为进化的依据,从而形成一种“生成+检验”为特征的智能计算方法。然而,同与所有随机搜索算法一样,PSO在求解较复杂的问题时容易陷入局部最优。本文在分析PSO目前研究现状的基础上,从不同的角度提出了几种改进算法,使之更加有效可靠;并将提出的改进算法应用于经济管理中的实际问题,拓展粒子群算法的应用领域。本文主要的内容概括如下:(1)介绍了传统优化方法和进化计算,重点探讨了群体智能的发展、特点和几种典型的群体智能方法。在阅读大量文献的基础上,按照作者的理解对PSO的研究现状与应用进行了归纳和总结,较为深入地分析了PSO中3个重要要素:邻域结构、边界约束处理和速度限制。(2)PSO是源于对社会型群居动物的行为模拟,因此将自然界的一些生物行为融入PSO中是一条潜在可行的改进途径。本文第三章提出了3种基于生物行为的PSO改进方法:基于生物寄生的双种群PSO(PSOPB)、模拟生物理想自由分布模型的PSO(IFDPSO)以及基于predator-prey行为的改进PSO(PPPSO)。PSOPB由宿主群和寄生群两个种群组成,两个种群之间模拟自然界中生物的兼性寄生行为,并考虑了“优胜劣汰”的进化法则。在分析生物觅食行为中资源斑块选择理想自由分布模型的基础上,提出了一种新型的粒子群算法—IFDPSO。IFDPSO将所有粒子中3个不重叠的个体最优位置的适应度视为资源斑块的食物质量,并根据理想自由分布模型随机分配相应数量的粒子到各个资源斑块中,从而保证了群体的多样性和算法的全局搜索能力。在分析生物的捕食—被捕食(predator-prey)行为规律的基础上,提出了一种由predator和prey两个种群构成的PSO(PPPSO)。predator种群间隔一定的迭代次数排斥prey种群,逐步向prey种群的群体最优位置靠近,同时每个prey粒子尽量逃离距离最近的predator粒子。采用这样的机制,提高了摆脱局部最优的能力。多个测试函数的仿真实验证明了3种算法的有效性。(3)鉴于单一智能算法在实际应用中面临各自的问题,相互之间的促进与补充便成为自然的选择。在分析PSO与人工蜂群算法(Artificial Bee Colony, ABC)的各自优势和缺陷的基础上,提出了一种以PSO为主,在适当的时候嵌入ABC邻域算子的混合算法(PSOABC)。在对PSO搜索原理简要分析的基础上,提出了PSOABC中2种ABC邻域算子方法:O邻域算子和R邻域算子。综合考虑PSO的邻域结构和2种ABC邻域算子,构建了4种不同类型的PSOABC。对4种不同类型的PSOABC仿真实验结果表明R邻域算子性能优于O邻域算子。将R邻域算子的PSOABC与其他几种PSO的实验结果进行比较表明带R邻域算子的PSOABC具有快速的收敛速度和搜索精度,是一种可靠的全局优化方法。(4)在分析基本PSO学习策略缺陷的基础上,本文第五章提出了2种新的学习策略的改进PSO:交互学习的双种群粒子群算法(ILPSO)和自适应的正交学习粒子群算法(SOLPSO)。ILPSO是启发于人类社会行为的特征,不同群体之间可以交互学习。由于交互学习的机制,群体的多样性可以得到维护,从而不容易陷入局部最优,测试函数的实验结果证明其有效性。针对PSO中的“两进一退”的现象,将PSO的每一维看成是影响试验结果(函数适应度值)的一个因素,利用种群中其他个体的信息,通过正交试验组合可以产生更优的个体最优位置,从而有利于加快收敛速度和提高搜索的精度。SOLPSO中提出了4种正交组合方法,并分析它们各自优势和缺陷,设计了一种根据算法的进程自适应调整正交组合方法的策略。多个测试函数的仿真实验表明了提出的两种算法的有效性。(5)建立了连续型物流配送中心选址的数学模型,并根据问题的特点,设计了合适的粒子编码方案。在考虑现实情况下,构建了一类离散Mean-CVaR投资组合模型,通过增加一个特定的惩罚项,将离散问题转化为连续问题的求解。提出的PSOPB和SOLPSO分别用于两类模型的求解,结果表明了它们的有效性。最后,总结了本文的研究成果,并对未来的研究方向提出了进一步的展望。