【摘 要】
:
航空发动机转子主要采用多级盘、盘鼓连接的形式,具有尺寸大、级数多等特点。装配是航空发动机制造过程中的重要一环,是影响整机性能的关键环节,若装配不平衡量不能满足实际需求,在工作过程中会引起较大的机械振动,严重影响航空发动机的工作性能,直接影响航空发动机的使用寿命。因此,研究装配过程中转子不平衡量的变换机理,在转子装配的过程中针对不平衡量超差等问题做出合理的调整对于保障装配质量、控制整机振动十分重要。
论文部分内容阅读
航空发动机转子主要采用多级盘、盘鼓连接的形式,具有尺寸大、级数多等特点。装配是航空发动机制造过程中的重要一环,是影响整机性能的关键环节,若装配不平衡量不能满足实际需求,在工作过程中会引起较大的机械振动,严重影响航空发动机的工作性能,直接影响航空发动机的使用寿命。因此,研究装配过程中转子不平衡量的变换机理,在转子装配的过程中针对不平衡量超差等问题做出合理的调整对于保障装配质量、控制整机振动十分重要。针对上述问题,本文建立转子装配不平衡量预测模型,通过试验验证了模型的准确性,并开发相关软件,同时基于预测模型进行优化达到减小转子装配初始不平衡量的目的。本文的主要研究内容有:(1)分析了转子零件自身不平衡量、装配位姿精度、装配相位、回转轴线位置及叶片装配等因素对转子装配不平衡量的影响,并采用拟合平面及拟合圆的方法进行端面偏斜及止口偏心误差的分析。(2)使用齐次坐标变换的方法,考虑装配相位的变化以及回转轴线的位置的影响后进行各个单件及装配体空间位置和姿态的表征,并结合静、偶不平衡量的计算方法,再考虑叶片装配及零件自身不平衡量的影响,综合计算获得校正面处产生的不平衡质量矩及转子整体的静、偶不平衡量,建立转子装配不平衡量预测模型,实现了通过质量、跳动数据等条件,对转子的初始静、偶不平衡量的精准预测。(3)通过试验对高压模拟转子的形貌跳动数据及不平衡量等参数进行测试,并与模型预测结果进行对比。其中各零件质心偏心量误差最大为0.00269mm,相位误差在25度以内,而对于转子整体静、偶不平衡量的大小的预测,误差分别为47.8g·mm和208227g·mm2,相位误差不超过30度,证明了模型预测的准确性,同时基于python开发了相关的预测软件。(4)基于预测模型使用遗传算法进行装配不平衡量的优化。以装配相位为设计变量,以转子装配初始静、偶不平衡量为目标进行双目标优化,静不平衡量降低至1.16%,偶不平衡量降低至3.29%,并与穷举法优化进行对比,证明其高效性与准确性。再考虑质心分布情况进行三目标优化,结果在有效减小静、偶不平衡量的同时质心分布降低至14.29%。同时对叶片装配时的排布顺序进行优化,不平衡量降低至0.024%。各种优化能够为实际装配过程提供指导,具有一定的工程意义。
其他文献
航空发动机之于航空飞行器相当于人的‘心脏’,发动机性能优劣对其有着决定性影响,发动机的性能指标中,轻量化是一个重要的研发指标,轻量化可以提高发动机推重比,进而提高飞机的各项性能。发动机中涡轮盘是重要的组成部件,其结构性能对发动机的性能影响很大,所以对涡轮盘进行结构优化设计是十分有必要的,针对传统的形状优化的局限性,本文以某型号航空发动机涡轮盘为优化构型,建立了完整的拓扑优化流程,实现对涡轮盘的优化
压气机叶片气动设计作为压气机整体设计的重要环节,是一个高度复杂的过程,它依赖于设计者长期的知识和经验积累,以及几十年来逐渐发展的各种设计工具。随着对压气机整体性能要求的不断提高,必须在最短的时间内设计出改进的叶片,压气机叶片设计主要需要解决优化驱动叶片设计的时间成本和有效性问题。针对上述问题本文开发了轴流压气机叶片综合参数化方法。目前,已有的参数化技术多是从纯优化的角度出发,获得叶片的参数化表征,
气动弹性实验是一种验证理论模型、研究理论无法解释的现象、验证新型气动弹性系统安全性和完整性的方法。对于飞行器而言,气动弹性风洞实验,凭借其可靠性高和代价低的优势,成为飞行器颤振设计研究的主要方法和手段。其中,二元翼段作为一种典型翼段模型,在验证气动弹性理论、研究相关的颤振机理等方面被广泛应用。本文针对二元翼段模型,设计了一基于沉浮-俯仰的二自由度弹性支撑的颤振试验模型,并对该颤振试验模型进行地面振
显式动力分析在冲击问题中被广泛使用,因其处理大变形、断裂等高度非线性问题的能力较强。对于显式动力分析,计算使用的时间步长和网格量均会显著影响计算耗时。其中,时间步长将受到最小单元特征尺寸和材料参数的影响。最小单元特征尺寸通常由细小零部件所控制。采用简化分析模型代替详细分析模型,可有效的克服最小单元特征尺寸过小问题,同时还可以降低分析模型的网格量。螺栓是一类常见的细小零部件。在显式动力分析中,若不考
在航空发动机各种动静部件中有多种相互连接的结构,例如:花键套齿、端齿、止口以及螺栓连接结构等,而在航空发动机的转子系统中常采用螺栓连接各级轮盘和鼓筒结构,构成一种盘鼓转子螺栓连接结构。由于在盘鼓转子螺栓连接结构中,对于螺栓连接位置的连接接触刚度是很难做到准确建模的,在进行工程应用过程中很难确保计算效率。本文以航空发动机为研究背景,以航空发动机中螺栓连接的盘鼓转子系统为本文的主要研究对象,从局部结构
花键副由于具有高扭矩的传递能力和不对中的补偿能力,为航空发动机的可靠、耐用和精准传动提供技术支撑。在起飞、巡航和着陆的过程中,花键副长期处于高循环载荷下,名义上处于静止状态但具有微小振幅的花键联轴器,通过扭矩夹紧在一起的两个表面之间会发生损坏,为涡轮传动系统的长期运行带来了严重威胁。为设计高性能航空发动机花键联轴器,准确预测微动磨损是一项关键技术。目前,航空花键在磨损方面的基础理论与预测方法不够完
探索轻质、低成本、高性能的新型夹芯结构,实现结构轻量化,是航空、航天事业亟待解决的问题之一。折叠结构作为一种新型的夹芯结构,具有比强度高、比模量高的优点,且结构表面曲率不连续,雷达散射截面积较小,因此该夹芯结构有望被应用于雷达、天线罩等领域中。在本研究中,基于折纸思想,提出并制备了U型折叠夹芯结构,分析了该结构的力学性能和电磁特性,并与传统V型折叠夹芯结构进行了对比研究,主要研究内容如下:(1)为
铝合金在国内民生工业领域扮演着重要角色,因为其优秀的物理和化学性能被广泛应用于航空制造业,在飞机结构上铝合金常用于制造框、舱门骨架、龙骨梁、腹板、蒙皮等。飞机装配时,需要在铝合金结构件上制出大量的孔用于铆钉联接或者螺栓联接。在航空制造业的制孔领域发展了一种比较新的工艺——螺旋铣孔,其在加工质量、加工效率、适用场景等方面展现出了一定的优势,受到了广泛的关注。本文针对铝合金2024材料开展了螺旋铣孔构
基于智能结构的变体飞机是未来飞行器发展的重要方向之一,多稳态变体结构具有保持多种稳定状态的能力,使其能够根据实际任务需求产生自适应变形,并且不需要额外的能量输入就可以维持在稳定状态下,是一种保证未来变体飞行器具有轻量化和低能耗特性的理想智能结构。但是国内外的研究现状反映出目前的多稳态变体结构仍存在承载强度低、稳定性差等方面的问题。基于此,本文提出了一种基于薄壁圆柱壳内压膨胀效应的新型多稳态变体结构
世界各国越来越重视航空发动机技术的发展,并将航空发动机的研究水平作为衡量一个国家工业水平的高低。航空发动机的制造非常复杂,国内外优质的、完整的发动机制造技术仅掌握在少数发达国家手中。对于航空发动机来说,叶片加工占整个航空发动机制造工艺流程的30%以上工作量。目前,国内外常采用电化学的加工方式对其进行加工,但电化学加工后的叶片进排气边缘型面精度不高,残余大量不规则形状余量。为解决电化学加工叶片工艺流