论文部分内容阅读
低温技术的应用非常广泛,从人们的日常生活到工农业生产过程,从医疗技术到科学研究,都离不开低温技术。低温温度测量是低温技术研究的重要保障,低温温度测量时,各种漏热如固体传导热、辐射传热及残余气体的导热等会导致温度传感器所测的温度与被测介质的实际温度间存在一定的温差,温度参数的不准确使得无法正确判断低温流体的实际状态、低温系统的工作性能等,因此分析低温测量过程中影响测温效率的因素,获得精确的温度参数对低温系统的研究意义重大。本文对在低温流体管路输送系统中采用铂电阻温度传感器进行温度测量过程中的传热模型进行了研究,分析了不同因素对温度测量的影响。研究内容如下:(1)建立发泡绝热和真空绝热低温管道下采用贴壁式和插入式铂电阻温度传感器的测温稳态传热过程的数学模型,运用了热阻网络分析各部分热阻对于测温精度的影响。定量分析了不同热阻下测量温度与流体真实温度之间的偏差关系,结果表明:贴壁式和插入式铂电阻传感器所测点的温度均与流体温度存在误差,不同的热阻项会导致传感器测量温度具有不同的变化趋势以及温差,温差在0.1K至10K量级范围内变化。(2)针对低温流体输送过程中温度非稳态变化过程,本文对两种测温模型建立了非稳态传热数学模型,定量分析了不同热环境以及传感器结构尺寸对非稳态测温的影响,研究表明:漏热以及传感器的结构导致传感器的响应时间延长了几十秒至几百秒不等。(3)以水平低温流体输送管道为研究对象,进行实验和理论的比较,管道为充注液氮流体的预冷工况,通过PT100对不同测点测量的温度变化曲线和模拟计算进行对比分析,结果表明:当液氮以410.5Kg/h质量流量充注直径DN100管道时,T1测点温降曲线的流体状态变化的分界点温度大约为-112℃,在这点之前,管内流体以单相气态或者气液两相态流过PT100传感器,此后则以单相液态流过;T2测点流体状态变化的分界点温度大约为-139℃,最终管道末端上方和底部的温度分别为-160.49℃、-194.64℃,管道末端处达到了气液分层流状态。当液氮以615.8Kg/h流量充注管道时,T1测点流体状态变化分界点温度约为-129℃;最终稳定时末端上方和底部的温度分别为-190.05℃、-195.45℃,说明管道内流体基本以液相状态存在。(4)分析了影响低温流体输送过程中静态和动态温度测量精度的因素,针对不同的影响因素提出消除或减小测量误差的措施,对工程应用具有指导意义。