Canonical对偶理论在非线性规划和最优控制中的应用

来源 :同济大学 | 被引量 : 0次 | 上传用户:liubangming98168
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文研究全局优化问题和最优控制问题。   本文利用Canonical对偶理论和常微分方程的经典理论,研究球体约束下的非凸函数的全局优化问题。引入常微分方程的解,构造Canonical对偶函数,刻画了原规划与其Canonical对偶问题之间的对偶关系,并给出Canonical凸乘子定义,得到了球体约束下的非线性优化的全局最优解的判别条件及相关结果。同时尝试运用倒向常微分方程进行求解。   另外,本文在利用Hamilton-Jacobi-Bellman方程的粘性数值方法求解一类最优控制问题时,应用Canonical对偶方法求解由Pontryagin原理导出的极值子问题,改善了原算法的计算效果。同时利用优化问题和控制问题的等价转换机制,对一类不存在Canonical凸乘子的全局优化问题进行数值求解。
其他文献
本文主要阐述了三维流形Heegaard分解的背景,发展历史,研究成果,以及最新研究成果,并提出了本领域的一些相关问题,最后构造了可稳定化的Heegaard分解的例子。   第一章介绍了三
本文主要研究了L-octo-代数上的经典Yang-Baxter方程类似结构与Hom-L-dendri-form代数、Hom-L-quadri-代数、Hom-L-octo-代数.L-dendriform代数、L-quadri-代数和L-octo-代数
随机偏微分方程是源于物理、化学、生命学科等应用学科的数学分支领域,目前已成为概率论(数学)中极为活跃,并且发展迅速的分支领域之一.本博士论文由三部分组成,主要集中研究若干典
学位
模糊逻辑是现代非标准逻辑的一个分支,自1965年美国学者L.A.Zadeh在其开创性文章“模糊集合”中提出了模糊集合的概念后,关于模糊逻辑方面的研究也随之展开。本文主要以Lukasi
本文主要研究利用反散射变换方法求解一类含自相容源的可积系统,包括含自相容源的AKNS方程族、含自相容源的非等谱KdV方程族、含自相容源的非等谱mKdV方程族和含自相容源的非
众所周知,赋范空间上满等距算子必然是线性的[54,65]。P.Mankiewicz[53]研究了开连通子集上的等距算子的延拓问题,他证明了从一个赋范空间的开连通子集到另一个赋范空间的开连通