【摘 要】
:
雷达传感器具有全天时全天候工作、非接触式等优点,可用于人体非侵入式的侦察监视,正逐渐成为城市反恐、远程健康监测等领域的重要感知手段。其中低频雷达可以实现穿透墙壁探测人体信息,但其微多普勒时频信息模糊,区分难度高。而深度学习的兴起使低频雷达具有区分那些在视觉上无法分辨的微多普勒时频特征的潜能。本文以低频段多发多收(Multiple-Input Multiple-Output,MIMO)超宽带(Wav
论文部分内容阅读
雷达传感器具有全天时全天候工作、非接触式等优点,可用于人体非侵入式的侦察监视,正逐渐成为城市反恐、远程健康监测等领域的重要感知手段。其中低频雷达可以实现穿透墙壁探测人体信息,但其微多普勒时频信息模糊,区分难度高。而深度学习的兴起使低频雷达具有区分那些在视觉上无法分辨的微多普勒时频特征的潜能。本文以低频段多发多收(Multiple-Input Multiple-Output,MIMO)超宽带(Wave Ultra-Wideband,UWB)步进频连续波(Stepped-Frequency Continuous,SFCW)雷达为基础,重点研究基于卷积神经网络(Convolutional Neural Networks,CNN)下的人体行走、坐下、跌倒三类行为的动作分类。本文首先研究了低频雷达的数据集获取。根据Boulic人体模型建立了以SFCW为发射信号的雷达回波模型,建立了雷达信号的基本处理流程,对比了微多普勒时频分析方法,研究了不同数据域上人体动作的时频特征提取,利用仿真及实测数据实现了基于低频雷达的数据集获取。其次,研究了雷达数据集的预处理和数据集扩充方法。基于深度学习数据集预处理方法,选择了适用于雷达时频图像数据集的预处理方法。基于二维时频域尺度变换和子频带微多普勒差异提出了两类数据集扩充方法,并用仿真、实测数据以及在CNN上的训练结果验证了数据集扩充方法的有效性。最后,研究了基于CNN模型的低频雷达人体动作分类。根据CNN模型的框架和每个层级的原理,将低频雷达的人体动作分类任务在Alex Net模型上实现了迁移学习,提出了基于模型整层压缩和单层结构压缩的两种CNN优化设计方法。基于模型优化得到了雷达动作识别网络(Radar Motion Recognition Networks,RMRnet)模型,在实测数据集上达到了99.35%的分类准确率。
其他文献
随着智能家居机器人、无人驾驶、虚拟现实等新兴产业的爆炸式发展,对三维场景的语义分析与理解的需求也越来越紧迫。与此同时,空间扫描技术的越发成熟,三维传感技术也取得了重大进展,大量的真实场景三维点云数据的获取也越来越容易。为此,三维场景的语义分析也越来越受到数据的驱动。由于三维点云数据的无序性,基于卷积神经网络的深度学习方法不能直接作用于点云上,而将点云数据转换为体素,采用三维卷积方法的计算开销太大,
作业减负,关键在于消除学生的作业焦虑,提升其学习主动性。这就需要打开作业“黑箱”,将作业纳入学习过程之中,让学生参与到作业评价中来。作业设计可秉持评价标准共定、及时/持续反馈、作业前置及结果可视四项原则。教师可尝试重构作业设计思路,引导学生理解作业目标,与学生共同协商任务内容、商定评价标准,同时注重作业反馈,指导学生改进,让学习为作业提供支架,用作业改进学生的学习表现,使学习与作业一体发展,增强学
通信辐射源个体识别(又被称为通信辐射源指纹识别)是通过测量发射机反映在信号上的差异对信号和发射机进行关联,在电子对抗中发挥着重要作用,是现代电子战中不可缺少的手段。本文主要研究无监督条件下通信辐射源个体识别,开展的主要工作如下:(1)将无监督学习引入到通信辐射源个体识别中,开展基于密度峰值聚类算法的通信辐射源个体识别方法研究。首先在双谱的基础上计算通信辐射源观测信号的直方图特征,提高其个体信息表征
人工智能有望成为新一轮科技革命、产业革命和军事革命的核心驱动技术,对于促进国家的经济发展、军事赋能和增长政治影响力方面都有巨大的应用潜力,因而也成为了国际竞争的新焦点。中美两国均高度重视人工智能这一领域,纷纷出台了战略政策文件助推其研发和应用,进行着激烈竞争。但另一方面,中美在人工智能领域仍存在着诸多合作。如何理解在中美战略竞争背景下,两国在人工智能领域仍存在着广泛而密切的合作关系?中美在人工智能
2001年发生在美国的9·11恐怖袭击,其影响之大、之广、之深远远超出我们的想象。对全世界而言,它是一个改变了世界格局的历史事件;对于美国而言,它是一次改变了国家政治形态的恐怖袭击;对于美国内民众而言,它是一场摧毁对未来期许的灾难。时隔多年,当时深受9·11之害的个人和家庭,今之何如?亚当·谢夫特的最新小说《那个未曾谋面的人》给了我们答案。本篇翻译实践报告的原文节选自《那个未曾谋面的人》一书。小说
现代战争对雷达目标识别提出了更高的要求,由于现役雷达大部分是低分辨雷达,对其开展目标识别技术的研究具有重要军事意义。在小样本、样本不均衡等复杂电磁环境条件下,传统低分辨雷达目标识别方法存在泛化性较差、识别率较低等问题。本文围绕深度学习方法对低分辨雷达目标识别技术开展研究,主要研究内容如下:传统低分辨雷达目标识别技术采用先提取信号特征,再基于特征进行识别的两步识别方法。论文首先研究了基于深度学习的低
"穿透式"行政检察监督打破行政诉讼固有"遮蔽",弥补行政检察监督缺位,是参与社会治理多元主体中不可替代的重要力量。"穿透式"行政检察监督多层穿透,具备坚实的理论基础。不仅如此,其通过发挥"一手托两家"的监督作用,在司法实践中具有监督行政诉讼活动、促进依法行政、实质性化解行政争议、提升社会治理能力的制度优势。实现"穿透式"行政检察监督之功效,应遵循精准监督、双重监督、实质监督、类案监督的监督理念,同
图像语义分割技术是目前计算机视觉技术领域中的热门研究方向,其研究具有重要的军事及民用价值。随着军事智能化要求的提高,语义信息发挥越来越重要的作用,这更加促进了语义分割技术研究的发展。本文以公开大规模数据集中的场景和物体作为研究对象,对图像语义分割算法展开了研究。研究重点内容包括以下三个部分:(1)介绍了语义分割技术的发展现状,对目前国际上主流的语义分割算法进行了归纳总结。在对目前国际上使用最广泛的
随着毫米波近场成像系统在安检等领域发挥作用,针对三维雷达图像的目标分类与检测方法具有了重要的理论研究和应用价值。三维雷达图像包含丰富的三维空间信息与雷达成像特征,本文尝试通过深度学习的方法,充分分析利用三维雷达图像具有的特点,深入研究针对三维雷达图像的目标分类方法。第一章论述了该课题的研究背景和意义,分三个小节详细总结了三维雷达图像目标分类的深度学习方法相关领域的发展现状,在此基础上归纳了本课题需
目标检测任务作为在图像处理和计算机视觉领域中的基础课题之一,在图像检索、视频监控、人脸检测、人机交互等方面上有着广泛的应用。传统的目标检测方法首先是对给定图片进行特征提取然后再进行分类抉择,因此特征提取的好坏对目标检测的性能起着关键的作用。相对于传统的目标检测方法,基于深度学习的目标检测方法通过大量数据训练能够自适应的学习到较好的特征提取方法,可以更好的在复杂场景下进行检测。目前比较流行的基于深度