【摘 要】
:
本文主要就具有某些特殊性的可积模型构造其无穷对称及Lie代数结构,而在若干环节中应用对称的变换理论.这些模型和它们的特点是:·广义Manakov方程和Sasa-Satsuma方程:它们在非线性光学中具有重要应用,但是都对应于三阶谱问题,与常见的两阶矩阵谱问题不同.·变系数KdV方程:系数为t的函数,在Painleve可积的条件下,与KdV方程之间存在规范变换.·Toda链:当|n|—∞时,两位势中
论文部分内容阅读
本文主要就具有某些特殊性的可积模型构造其无穷对称及Lie代数结构,而在若干环节中应用对称的变换理论.这些模型和它们的特点是:·广义Manakov方程和Sasa-Satsuma方程:它们在非线性光学中具有重要应用,但是都对应于三阶谱问题,与常见的两阶矩阵谱问题不同.·变系数KdV方程:系数为t的函数,在Painleve可积的条件下,与KdV方程之间存在规范变换.·Toda链:当|n|—∞时,两位势中的一个渐近于1.而不是都渐近于0.论文首先研究推广的Manakov方程和Sasa-Satsuma方程的对称.推广的Man-akov方程为二阶耦合的非线性Schrodingcr方程,Sasa-Satsuina方程则为三阶方程,它们在数学上的共同特点是都对应于三阶矩阵谱问题,均可由多分量AKNS方程约化得到,我们利用约化技巧将四个分量的AKNS方程族的对称和李代数分别约化成具有两个分量的推广的Manakov方程和具有标量形式的Sasa-Satsuma方程的对称和李代数.如何在自变量个数减少时保持Lie括号约化的封闭性,是本章工作的关键环节.为此,在Sasa-Satsuma方程的约化过程中我们借助了规范变换.另外,利用多分量AKNS方程族的递推算子的逆辛-辛分解讨论了多分量AKNS方程族的多Hamilton结构.其次,论文讨论变系数KdV方程的对称.对于变系数KdV方程,我们引入了它的两类方程族,利用Hirota方法和Wronskian技巧分别讨论非等谱变系数KdV方程的孤子解,利用准递推算子的性质以及两类伴随流与准递推算子的关系讨论变系数KdV方程的两组对称K-对称和T-对称及其李代数结构.上述结果也可以在规范变换下得到实现,我们将重点讨论利用对称变换理论给出变系数KdV方程的两组对称和李代数结构.最后论文讨论Toda链方程族的对称.对于Toda链谱问题关键在于选取合适的谱参数λ与时间变元t的演化关系,使得在等谱流和非等谱流在|n|→∞时,un和un分别充分快地趋向于1和0的情形下,都渐近于零.然后利用零曲率表示获得递推算子的遗传性,得到Toda链方程族的两组对称及其相应的李代数结构.而(un·τn)→(1,0)(当|n|→∞时).这一特点既为零曲率表示理论提供了更广泛的应用,也引出了新的李代数结构.
其他文献
早期的单区域谱方法主要是研究正方形区域、圆域等规则区域的问题,这里我们引入一个新的区域:方圆域,该区域是由B(x,y)≡x2v+y2c-1=0定义的方圆形曲线为边界的区域.这个区域的边界随着v的变化,而平滑的由圆域(v=1)变为正方形域(v=∞).这个区域有很多好的性质,值得我们深入研究.本文考虑了在八元的D4对称群下不变的区域,即这个区域是关于x轴和y轴以及对角线x=y做映射不变的.本文避免了对
复杂网络的研究正从数学和物理学不断渗透到生物学、信息科学、工程技术科学、以及社会科学等不同学科中,具备多学科交叉和融合的特征。对复杂网络上系统的动态性质即网络上的动力学行为进行深入探索,也是网络时代复杂性科学研究中的热点方向。本文综合利用概率统计、随机过程及微分方程等知识,重点研究了一类由活性驱使的特定动态网络上的偏好随机游动的动力学行为及不同网络结构下长程作用对线性量子系统和非线性量子系统的影响
真实世界中的许多复杂系统,如生物系统、社会以及通讯系统等,都是由大量的相互作用的个体单元组成,而这些个体之间往往具有一定的差异性或多样性。自上世纪末以来,通过由节点(个体)和连边(个体之间的相互作用)构成的复杂网络模型已成为了描述和研究复杂系统的拓扑结构及其动力学性质的有效工具,并在很多领域都有着广泛的应用。本文在复杂网络这一平台上研究个体多样性对网络演化以及流行病传播的影响,具体内容分为以下三个
本论文的研究内容属于Orlicz-Brunn-Minkowski理论,该领域是Lutwak, Yang,和Zhang在2010年提出的一个新兴凸几何研究方向.本文主要致力于该理论中Orlicz Minkowski问题及相关极值问题的研究.本论文的研究工作可以分为四个方面:在第二章中,我们给出了关于一般测度的Orlicz Minkowski问题的解.该结果推广了Haberl, Lutwak, Yan
约束矩阵方程问题是指在满足一定约束条件的矩阵集合中寻求矩阵方程解的问题,它在结构设计,参数识别,自动控制,有限元理论,线性规划等领域有着广泛的应用.该问题的研究主要涉及两个方面:一是理论上的可解性,即从理论上寻求问题有解的充分及必要条件;二是问题求解的实际算法,即从算法上实现问题的解.约束矩阵方程的迭代解法是算法实现的重要途径之一(另一类方法称为直接法).本文基于数值线性代数中求解一般线性方程组的
引力/范场对偶给我们提供了一个很好的工具来研究强耦合的凝聚态系统。本文主要利用引力/规范场对偶,研究了非相对论性的全息非费米液体、化学势对于对偶液体类型的影响以及各向异性的全息非费米液体。第一章,我们简单介绍了朗道费米液体理论、非费米液体、AdS/CFT对偶以及全息非费米液体。第二章中,使用带电的Lifshitz黑洞,我们研究了具有Lifshitz标度不变性的全息费米子系统。我们讨论了费米子的电荷
近年来人们对高温超导体中涡旋态性质的研究一直抱有很大的兴趣。由于高温超导体的母体化合物是反铁磁Mott绝缘体,所以考虑到自旋磁性与超导电性的相互竞争,新奇的涡旋态性质倍受期待。和正常金属超导体不同,欠掺杂或稍过掺杂高温超导体传导电子之间相干长度非常短,和相干长度相关的Thomas-Fermi屏蔽效应明显减弱。从而欠掺杂或稍过掺杂高温超导体中长程库仑势就变得比较重要。长程库仑势的引入可能会带来一些新
复杂网络科学作为一门新兴学科,为研究复杂系统的结构与功能提供了有力的分析与建模工具。本篇论文主要研究复杂网络上的两类重要动力学过程即同步和疾病传播相关的一些问题。具体工作如下:第二章首先研究了具有多种连接模式的时滞网络中的同步问题,重点研究了时滞和网络结构对同步的影响。对于连接方式相同的情况,我们给出了有效的渐近同步判定定理;对于不相同的情况,我们给出了当时滞比较小时判定同步的一个充分条件。对于一
20世纪的分子生物学经历了从宏观到微观的发展过程,由形态、表型的描述逐步分解、细化到生物体的各种分子水平功能的研究。系统生物学是在细胞、组织、器官和生物体整体水平研究结构和功能各异的各种生物分子及其相互作用,并通过理论和计算来定量描述和预测生物功能、表型和行为。系统生物学研究是一个逐步整合的过程,常把它称为21世纪的生物学生物体在系统内部的个体相互作用以及系统外部的环境变化的双重影响下,整体上会涌
本学位论文的研究内容属于凸几何分析理论,其中Brunn-Minkowski理论是该理论的核心内容.本文致力于Lp Brunn-Minkowski中极值问题的研究,牵涉到Lp Blaschke加、最佳仿射Sobolev范数、复截面问题.本论文的研究工作可以分为三个方面:(1)我们提出了关于多胞形的Lp Blaschke加的概念(1