论文部分内容阅读
非线性动力系统分支理论的研究和应用在近三十年来得到迅速的发展,在化学、物理学、流体力学、振动力学、天体力学、生态学、生物学和财政金融等社会科学领域有着广泛的应用。这些领域中大量的数学模型都是由非线性动力系统来描述的,应用非线性动力系统的定性方法和分支理论来研究这些数学模型,获得对社会生产、工程应用和科学研究有重要指导意义和应用价值的结果,是数学和其它领域科学工作者孜孜以求的目标之一。本论文选择非线性动力系统分支理论研究领域中的两个问题作为研究对象,一是非线性波方程的解析解;二是等变平面向量场的极限环个数和分布。论文第一章阐述了这两个问题的产生背景、发展历史和国内外的研究现状,并对本论文研究工作涉及到的基础理论知识做了简要的概括。论文关于非线性波方程解析解的研究主要包括三个部分:第一部分研究2+1-维Davey-Stewartson-Type方程,采用动力系统方法将原系统的偏微分复方程形式转换为常微分自治系统,通过分析不同参数条件下相图的特征,分别研究了参数n取1,2的情况和n取一般值情况下孤立波解、周期波解和无边界波解等各种解的存在性,并获得了部分解的解析参数表达式。借助于解析表达式,针对每一类解,使用数学软件模拟了解的状态,并分析了各类参数值对解的形态的影响。第二部分研究Non-Local Hydrodynamic-Type模型,该模型经过转换后的常微分方程模型属于奇异非线性行波系统,因此采用“三步法”来研究这个方程。首先将奇异系统转换成正则系统,其次分析了正则系统在不同参数条件下的相图,最后归纳了原系统的光滑周期波解、非光滑周期尖波解和Pseudo-Peakons解的存在性条件,特别求出了在参数n等于2(等容Gruneisen系数取1)的情况下孤波解、破损波解和周期波解的解析参数表达式。第三个部分研究交流电驱动下的复Ginzburg-Landau方程,采用动力系统方法,通过对系统参数关系的推导,获得参数之间较为严格的限制关系,对参数做了较为全面的讨论,分析了稳定解的动力学属性和它们的分支,并获得了全部的有界精确解以及这些解存在的参数限制条件。本论文第二个问题的研究属于弱化的Hilbert第16问题,以七阶6次等变平面系统和七阶7次等变平而系统为研究对象,通过对未干扰多项式系统的相图分析,确定哈密顿函数定义的实平而代数曲线族的全局属性,再用判定函数法获得在不变多项式分支项干扰下,极限环至少出现的个数(分别为37和35个)和复眼分布模式。最后结合参考文献分析了等变次数和干扰项对于研究过程和结果的影响。论文最后对博士学习期间的工作做了总结,并提出了下一步工作的重点和具体研究方向。