论文部分内容阅读
羟基磷灰石(HA或HAp)凭借其优异的生物活性和生物相容性而被广泛的应用于人工硬组织替换等领域,但是纯HA存在一些力学性能方面的不足,强度低,脆性大,不能起到人体关节承重的作用。金属钛具有较好的力学性能,但是在植入人体后的应用过程中存在生物活性不足、力学性能和人体不匹配等问题。基于两种材料作为生物医学材料的优劣特点,本文使用机械球磨的方法制备HA/Ti复合粉末,通过控制球磨参数分析其对复合粉末相成分及微观形貌的影响;通过热压烧结制备HA/Ti块体复合材料,分析不同参数对烧结试样组织形貌、颗粒尺寸,表面形貌、物相、硬度及孔隙率的影响;通过对基于钛合金表面等离子喷涂制备HA/Ti复合涂层分析,研究在保证涂层生物活性的基础上如何提高涂层的各项性能。最终目的是希望能够改善HA或者金属钛作为单一材料使用的缺点。论文取得的主要结论如下:球磨使HA发生分解,湿磨过程中HA粉末转变成了非晶体;干磨过程中,HA粉末转变成了成分复杂的晶体,两种粉末在球磨过程中发生了嵌合。纳米HA与600-800目Ti通过湿磨能够保留更多的HA原始相,且得到的复合粉末晶粒尺寸更为细小。粉末比例对湿法球磨后复合粉末的成分有非线性的影响,当HA:Ti的质量比达到1:3时,复合粉末中的HA会急剧减少。复合粉末在球磨过程中不会因为球磨时间而发生比例的改变,并且证明HA存在固定的消耗,这个值约小于1/4的粉末加入总量。使用最优600-800目Ti粉与纳米HA按照配比HA:Ti(1:2)湿磨(球磨时间不同)制备烧结原始粉末,由于粗细粉共同存在,改善压缩性能,使试样的收缩率变大。原始粉末球磨时间越长,复合粉末杂峰变多,HA分解量增加,高温下HA与Ti反应更激烈,生成产物中含有Ca Ti O3,其为离子型晶体结构,物理表现为脆性,另外两相界面处存在Ca O,Ca O在空气中有吸水性,其与H2O反应生成Ca(OH)2,Ca(OH)2易与空气中CO2反应生成Ca CO3,Ca CO3也为离子型结构,物理表现也为脆性,直接导致烧结试样脆性较大。HA/Ti复合粉末烧结试样的近似孔隙率为27.6±3.2%,氧化产物所占比例为36.5±5.2%,Ti所占比例为35.9±2.1%,烧结试样的孔隙率偏大导致硬度值偏低,然而孔隙率偏大可能是金相制样过程中结合不好的颗粒脱落,造成孔隙率的增加,以及试验压力太低,烧结压力(27.5MPa),使得试样不致密,孔隙度比较大。总之烧结试样的结合力较差,孔隙率偏高,硬度值偏低。采用纳米HA和600-800目Ti粉末湿磨制备原始材料,大气等离子喷涂的复合涂层构是以钛为骨架,HA镶嵌在其中的结构。纯HA涂层内部有较大垂直裂纹产生,涂层弹性模量4.8GPa,与基体之间结合强度仅有2.43GPa。当在粉末原料中加入适量50wt.%Ti时,会使涂层弹性模量明显提高至20.9GPa,与基体结合强度显著增强至39.75GPa。其中纳米HA和600-800目Ti粉末配比为1:1时的结晶度明显要比粉末配比为1:2时要高。从Ti O峰强度可以看出,当HA和Ti粉末配比为1:1时,Ti的氧化问题比(2:1配比)试样严重,这将严重降低涂层与基体之间的结合强度,侧面说明HA量的增加有利于抑制Ti O的产生。LPPS喷涂能够有效的避免Ti的氧化,提升涂层的致密性和力学性能。该论文有图幅52个,表17个,参考文献70篇。