论文部分内容阅读
高精度的时间已成为一个国家科技、经济、军事和社会生活中至关重要的参量,广泛应用于导航、电力、通信、航空、国防等领域。作为最基本的物理量,对支撑国家科学研究也有基础性作用。当前,国际上大多守时实验室采用氢钟或铯钟,或两者联合产生稳定的时间尺度。联合守时是将不同类型的原子钟进行组合,产生一个综合时间尺度。目前国际上采用的氢铯联合守时算法大多都是利用氢钟短期稳定性检验铯钟短期频率跳变;利用铯钟或铯钟组作为氢钟的测量参考,确定氢钟频率漂移;最后将原子钟数据进行加权平均产生综合时间尺度。当氢原子钟作为参考对铯原子钟进行测量的主要噪声是相位白噪声,经数学方法滤波后,其时间尺度短期稳定度仍会受铯原子钟噪声的影响。氢铯两类原子钟的特性不同,传统联合方法对于两类原子钟采用同种取权方式,对于两类原子钟各自优势的最佳利用存在一定局限性。针对这些问题,本文基于全氢钟和全铯钟时间尺度性能,利用Vondrak-Cepek滤波方法实现了氢原子钟和铯原子钟的融合,避免了氢铯互为参考带来的问题,且根据滤波器的平滑参数选择,对两类原子钟时间尺度进行不同的取权,取得了较好的结果。论文以提高时间基准性能为目标,利用中国科学院国家授时中心所保持的我国时间基准UTC(NTSC)系统的原子钟资源,开展了相关研究。首先,结合原子钟幂律谱噪声模型对不同类型的原子钟噪声模拟方法进行了相关研究和分析,为氢铯融合方法提供原子钟模拟数据支撑,以检验算法有效性;其次,分析了几种经典的时间尺度算法,并基于实时加权算法实现了全铯钟和全氢钟时间尺度的计算,利用最小误差理论对氢原子钟的频漂参数进行最优估计,有效的提高了全氢钟的时间尺度性能,为进一步实现Vondrak-Cepek组合滤波的氢铯融合奠定基础;在此基础上,重点研究了Vondrak-Cepek滤波的氢铯时间尺度融合方法。利用全氢钟时间序列的差分信息对全铯钟时间序列进行性能增强,成功的将两类原子钟组所产生的时间尺度进行了融合,有效的提高了时间尺度性能。论文的研究内容和创新点分为以下四部分:1.研究了不同类型原子钟噪声数字化模拟方法对于原子钟数据的数字化模拟,一方面有助于对该类型原子钟噪声的分析并检测降噪、时间尺度算法等的有效性;另一方面,可避免花费大量时间测量数据,有效的节约时间和资源,可实现多个模拟实验同时进行,减少资源的浪费。因此,研究了原子钟噪声数字化模拟方法,并设计了仿真实验,结合国家授时中心原子钟的钟差数据,利用最小二乘法估计各类型的噪声参数,实现对不同原子钟噪声的模拟。同时,设计实验验证了该模拟方法的有效性。原子钟噪声的数字化模拟有助于更深层次的理解原子钟特性,为充分发挥每台原子钟性能奠定了基础。原子钟模拟数据具有很好的连续性,可为氢铯融合方法的有效性检验提供更为可靠的数据支撑。2.比较了几种经典时间尺度算法,研究并分析了基于经典算法的氢铯联合时间尺度性能原子钟的发展迅速,但长时间运行的物理设备总有出现故障的可能。因此,为了保证时间尺度的可靠性,时间保持利用多台原子钟数据经数学方法计算综合时间尺度,其性能高于守时钟组中任一单台钟性能。讨论了时间尺度的基本概念、主要特征以及基本原理。而针对不同的应用需求会设计不同的时间尺度算法。因此,研究了三种经典的时间尺度算法:ALGOS、AT1及Kalman算法,并对这三种方法进行了比较分析,总结了各方法的优缺点。同时,基于同样的原子钟数据实现了三种经典算法的氢铯联合,讨论和分析了三种综合时间尺度性能。优选算法以实现单一原子钟类型钟组的时间尺度,为氢铯原子时间尺度融合奠定基础。3.提出了基于最小误差理论动态估计氢原子钟频率漂移的方法氢铯联合守时的主要目标是充分利用两类原子钟的优势,同时最大限度消除或减弱两类原子钟缺陷。对于氢原子钟,则需减弱频率漂移项对于时间尺度的影响。传统的方法是在一个月的时间间隔内拟合一个固定的频漂参数,将氢原子钟钟差数据中的频漂项扣除后参与时间尺度的计算。但实际中,氢原子钟的频漂不是一成不变的。因此以氢原子钟作为研究对象,探索利用最小误差理论对氢钟的频漂进行动态估计,该方法可以准确地对氢原子钟频漂参数进行数学建模,能够更加真实的反映氢原子钟的运行特征。利用该方法估计氢钟频率漂移项并计算综合时间尺度,改善了综合时间尺度性能。4.提出了Vondrak-Cepek滤波的氢-铯融合原子时间尺度算法氢原子钟和铯原子钟是当前国际原子时和各国标准时间产生的主要精密频率源,二者分别拥有优良的短期和长期稳定度特性。充分利用氢钟短稳和铯钟长稳进行时间保持成为时间产生过程中的一项关键技术。传统的氢铯联合方法对于两种不同类型的原子钟采用同一种方式取权,对于两类原子钟优势的最佳利用具有一定局限性。因此,以提高时间尺度的长短期稳定性为目标,提出了Vondrak-Cepek组合滤波的氢铯融合时间产生方法。根据最小二乘原则对Vondrak-Cepek组合滤波关键参数进行选取以实现对于全氢钟和全铯钟时间尺度的不同取权,进而通过全氢钟时间尺度时间序列的差分信息对全铯钟时间尺度进行性能增强,从而获得氢铯融合原子时间尺度。产生的融合时间尺度均优于氢铯单个时间尺度相同平均时间上的性能指标。因此,Vondrak-Cepek组合滤波算法既可以有效利用氢钟组的短稳对铯钟组的短期噪声进行抑制,也可以保持铯钟组本身的优良长期稳定度,使产生的时间尺度兼顾了长期和短期稳定度性能。