论文部分内容阅读
烧结Nd-Fe-B磁体在新能源汽车、风力发电、消费电子等领域应用日益广泛,对磁体性能的要求也越来越高。目前普遍采用速凝铸片(SC)+氢破(HD)+气流磨(JM)的方法制备烧结Nd-Fe-B用磁粉,但该法制备的磁粉存在表面富Nd相包覆不均匀、尺寸较大且分布不均匀、颗粒形状不规则等缺陷,制约了烧结后磁体的细晶化及富Nd相的均匀分布,从而限制了磁体性能特别是矫顽力的提升。针对这一现状,本文设计了一种HDDR-G(HDDR+晶体生长)制备Nd-Fe-B磁粉的技术,期望获得平均尺寸2.0-3.0 μm且粒度分布窄、颗粒形状规则、颗粒表面富Nd相包覆好的Nd-Fe-B磁粉,为制备高性能烧结Nd-Fe-B磁体奠定基础。研究了三元 Nd-Fe-B 和多元 Nd-Fe-B-M(M=Cu、Al、Ga、Co、Zr)速凝铸片的HDDR反应及反应过程的组织演变。研究表明,吸氢过程中氢气首先与晶间富Nd相发生氢化反应,并沿着富Nd相通道进入速凝铸片内部,歧化反应从速凝铸片表面和内部富Nd相通道同时开始,并扩展到整个速凝铸片。HDDR过程中,速凝铸片柱状晶被细化成Nd2Fe14B等轴晶,富Nd相经过扩散和迁移,重新分布在Nd2Fe14B等轴晶的角隅处和晶界处。研究了 HDDR处理后Nd2Fe14B晶粒的生长行为及影响晶粒长大的因素。复合形核后,Nd2Fe14B晶粒先是均匀长大,然后出现晶粒异常长大现象。Nd-Fe-B合金中Nd含量的增加,有利于富Nd润湿晶界的形成,使晶界迁移由固态原子跃迁逐渐向液态原子扩散转变,提高晶界迁移率,促进晶粒均匀长大;温度升高一方面能大大提高晶粒生长速率,促进晶粒均匀长大,另一方面也会缩短晶粒异常长大孕育期,使异常晶粒提早出现。通过延长晶粒异常长大孕育期(高温短时+低温长时热处理技术)和提高晶粒生长速率获得了平均尺寸2.0-3.0μm且粒度分布窄、形状规则、表面富Nd相包覆均匀的Nd2Fe14B等轴晶组织。揭示了 HDDR Nd2Fe14B晶粒生长机制,阐明了抑制晶粒异常长大的机理。HDDR Nd-Fe-B合金中与大体积角隅富Nd相接触的Nd2Fe14B晶粒会形成facet光滑界面,并发展成异常晶粒。Faceted Nd2Fe14B晶粒具有最大晶粒生长驱动力Δgmax,当△gmax小于晶粒异常长大临界驱动力△gc时,不会出现晶粒异常长大现象,当Δgmax大于Δgc时,faceted Nd2Fe14B晶粒会快速长大成异常晶粒。抑制Nd2Fe14B晶粒异常长大的方法是调控Δgmax和Δgc的值,使Δgmax低于Δgc。温度升高会降低Δgc,高温热处理Δgc值较低,晶粒异常长大孕育期较短,在△gmax即将增至Δgc时进行降温处理使△gmax重新低于Δgc,从而延长了 Nd2Fe14B晶粒异常长大的孕育期,抑制了晶粒的异常长大。采用氢破、球磨的方法制备了 HDDR-GNd-Fe-B磁粉,磁粉具有颗粒形状规则、粒度分布窄、表面富Nd相包覆良好的优点。三元Nd-Fe-B磁粉d50、粒度分布d90/d10值分别为2.26 μm、4.07,多元Nd-Fe-B-M磁粉的d50、粒度分布 d90/d10值分别为 1.66 μm、3.52。