【摘 要】
:
在当前工程建设大发展的时代,水利水电、公共交通和能源矿业的建设及安全维护逐步进入日趋复杂,精准评估大型岩质边坡和地下岩体工程结构的稳定性是设计科学合理的支护体系、预防地质灾害和工程事故重要前提。天然岩体中节理裂隙发育,其变形、失稳很大程度上由岩石节理的变形、滑移和破坏控制,因此精准预测岩石节理的变形和破坏具有重大意义。当前理论模型的发展迅速,但是普遍面临样本单一,仅对实验样本具有较高的精度,缺乏可
【基金项目】
:
“特大滑坡成因演变机理与快速防治岩土力学问题研究(2018YFC1505301)”基金;
论文部分内容阅读
在当前工程建设大发展的时代,水利水电、公共交通和能源矿业的建设及安全维护逐步进入日趋复杂,精准评估大型岩质边坡和地下岩体工程结构的稳定性是设计科学合理的支护体系、预防地质灾害和工程事故重要前提。天然岩体中节理裂隙发育,其变形、失稳很大程度上由岩石节理的变形、滑移和破坏控制,因此精准预测岩石节理的变形和破坏具有重大意义。当前理论模型的发展迅速,但是普遍面临样本单一,仅对实验样本具有较高的精度,缺乏可迁移性的缺陷。因此获取更精准、更具鲁棒性的模型预测和评估岩石节理剪切的力学和变形特性是必要的。本论文分析了影响节理剪切特性的诸多因素,在此基础上采用人工智能技术进行预测和评价。本文通过收集以往学者的剪切实验,获取了更大的样本规模,通过交叉验证算法获取稳定拓扑结构,利用MBGD、Adam和RMSprop算法优化BP神经网络,进而预测剪切力学性质。为进一步拓宽模型的适用范围,本文通过不同含水率岩石节理的直剪实验,模拟岩质边坡在处于短期和长期雨水浸泡下的力学特点,分析了初始起伏角(4))、法向应力()和含水率()对红砂岩节理的强度、变形特征和破坏模式的影响,并将PCA算法和BP神经网络算法相结合预测不同含水率下抗剪强度。本文主要有以下发现:(1)根据二维抗剪强度模型和三维抗剪强度模型测试结果,相较于重构输入参数,原始参数更易于模型的特征提取,预测准确性更高,并且显著优于理论模型。两类模型的单因素敏感性分析结果显示法向应力是影响抗剪强度的最重要因素。(2)通过剪切过程全曲线预测结果分析,神经网络模型有效反映出实验特点:随法向应力和粗糙度增加,峰值剪切应力和残余剪切应力增加;随法向应力增加剪胀减小。(3)红砂岩遇水软化显著,单轴抗压强度、抗拉强度和弹性模量与含水率呈现负指数函数关系。并且随增加,红砂岩节理峰值剪切应力和凸起对抗剪性能的贡献系数降低;当4)、和增加,节理面凸起由表面磨损向啃断破坏过渡,并且横断面凸起的破裂位置由上部向根部转移,破坏面积和破坏体积增加。最后比较PCA_BP神经网络和BP神经网络预测抗剪强度的性能,PCA_BP神经网络的测试精度跟高,模型结构更加简单。
其他文献
随着医学的不断进步、新药物的不断开发,陆栖微生物这一传统的抗生素、酶抑制剂等生物活性物质资源库已接近枯竭。新药物的发现速率明显减慢,科技投入产出率不断下降,人们迫切需要寻找新的药源。海洋微生物是海洋里类群最庞大的生物,已发现的海洋微生物包括海洋细菌、海洋放线菌和海洋真菌等,几乎是应有尽有。海洋微生物的多样性及其所产生生物活性物质的特异性,决定了海洋微生物作为生物活性物质产生菌的潜力是十分巨大的。特
随着激光在生产加工以及生活中的普遍应用,对于激光防护(光限幅)材料的研究也日益成为社会关注的焦点。在材料中引入稀土元素,提高材料的三阶光学非线性,从而提高材料的激光防护性能,本文研究的激光防护玻璃可防Nd:YAG倍频激光(532nm)。首先综述了各种激光防护技术,国内外发展状况及特点,并重点介绍了国内外专家利用不同的稀土元素,不同的浓度混合,以及不同的基质材料等来提高材料的三阶光学非线性。研究了硼
多元函数逼近是一元函数逼近理论的发展,是逼近工具和被逼近对象方面的多元推广.多元逼近理论的研究日益受到数学、计算机科学、物理及工程领域的专家和科技工作者的重视,已成为当今逼近论和计算科学的研究热点之一.本文介绍了该领域的相关概念、理论,并对多元插值问题做了深入地研究和阐述,充分吸收和消化国内外学者关于RS空间插值问题的研究成果,得出关于RS空间插值问题的几个结论.本文包含以下三部分主要内容:第一部
合理的城市功能区规划是城市可持续发展的基础。城市功能区的准确识别是城市规划的重要内容,而当前城市功能区识别方法的相关研究,大多仅基于单源数据分析建模来进行功能区的划分与识别,无法充分利用易于获取的多尺度多来源的数据,为此本文提出了基于多模态机器学习的城市功能区域分类模型MM-Urban FAC,模型部分首先使用SE-Res Ne Xt与自定义结构的DPN结合的双分支神经网络,用来自动挖掘与融合多来
在传染性疾病预防当中,疫苗作为一种可以使机体产生抗体的预防性生物制剂,已成为对抗此类疾病的重要武器之一。疫苗组分中的佐剂具有抗原储存库效应,可辅助增强免疫反应。因此,成为疫苗研发过程中的一个关键步骤。在众多佐剂中,铝盐佐剂是最早获得FDA批准使用的产品之一。由于其安全性好,成本低等优点,被广泛使用。其中,氢氧化铝(Al OOH)纳米佐剂临床研究表明,其佐剂效应与其纳米颗粒形态、结晶度和表面羟基含量
生物医学作为一门前沿交叉学科,与人们的生命健康息息相关。近年来,随着生物医学领域的快速发展,生物医学文献数量也开始大幅度呈指数增长。隐藏在这些数据中的丰富信息,对生物医学领域的药物研发、疾病预防、数据库构建等都具有十分重要的意义。因此,通过文本挖掘技术处理和分析无结构化的生物医学文献,能够极大地推进该领域的研究发展。关系抽取作为文本挖掘技术的一个重要分支,能够自动地从非结构化文本中抽取信息。目前主
驾驶疲劳是导致重大道路交通事故的关键致因要素之一,相关工程技术研究人员已针对疲劳检测问题进行有较为广泛的研究,并取得了一系列研究成果。然而,由于不同驾驶人之间存在一定的个体特性差异,这为驾驶疲劳状态的准确、可靠检测带来了相当难度。为此,本文围绕驾驶人个体特性差异所导致的疲劳检测模型适应性不足问题,在对疲劳状态表征及检测机理深入解析的基础上,提出了一种基于深度网络的驾驶疲劳自适应检测方法,以有效解决
在目前的肠道疾病检查领域,传统的内窥镜检查因其高痛苦、高风险的特性已不能适应人们的需要。以非侵入式的胶囊机器人进入人体检查,正成为一种新型的检查方式。在实际的诊疗过程中,为了便于医生观察病灶,胶囊机器人的姿态反馈控制信息显得至关重要。现有的姿态感知方法多采用信号探测或传感器阵列测量的方式,这种方式极大地消耗了硬件资源并增加了成本,不利于胶囊机器人的推广使用。本文从胶囊机器人携带的相机入手,提出了一
疾病的诊断与控制、环境监测、药物开发和食品安全问题已成为当今世界广泛关注的问题。肆虐的新冠病毒感染人数达到一亿四千万,死亡高达三百万,日本政府宣布将开始向大海排放福岛核废水等等事件,对人们的生命健康和生产生活造成了严重的威胁和影响。当前迫切的需求推动着生物传感器不断发展,同时也对生物传感器提出了更高的要求。本文提出了一种基于超窄带包层模共振的高反射率FBG生物传感器。由于毫米波前向传播芯模和光纤光
无线胶囊内窥镜由于具有风险低,创伤小、方便快捷的优点已经得到广泛应用。随着无线内窥镜的发展,具有主动运动控制功能的胶囊机器人已成为临床医疗检查的发展趋势。目前已投入使用的无线胶囊内镜通常仅适用于对小肠病变的检查,对于能够在胃与结肠等宽裕环境内主动运动的胶囊机器人的研究仍然是个难点。本课题组研制的双半球形胶囊机器人采用三轴亥姆霍兹线圈作为驱动源,实现了旋转磁场强度与方向的任意调节,解决了姿态调整和位