论文部分内容阅读
激光脉冲到达时刻的精确测定是实现高精度激光时间传递的关键技术,这对单光子探测器的精度与稳定度要求极高。当前最先进的时间传递系统,对整个链路的精度要求已经达到~20 ps,长期稳定性能要求已达到亚皮秒级别。作为系统的核心模块,单光子探测器的探测性能对时间传递系统起着至关重要的作用。本文主要研究适用于星地激光时间传递系统的高精度高稳定度Si-APD单光子探测技术,解决限制探测器精度和稳定度的延时漂移难题,并通过改善探测方案增加有效数据测量量,使时间传递系统的精度优于~30 ps,稳定度优于~0.1ps@300s,~1 ps@1day,为星地时间信号的高精度高稳定度传递与比对提供技术支持。论文的创新点与主要研究内容如下:1)针对单光子探测器的长时间高稳定探测,发展了一种主动抑制与门控探测相结合的高精度雪崩读出电路,完成了两版分别带有温度漂移自动补偿与温度漂移主动控制的高精度单光子探测器研制,单次测量精度均优于20 ps RMS。在此基础上,搭建了一套高精度高稳定度时间传递测试系统,最终测得整个激光时间传递链路的精度优于25 ps RMS,短期时间稳定度优于0.1 ps@300s,长期时间稳定度优于0.5 ps@1day,对应频率稳定度达到2×10-17@1day。本文研究的单光子探测技术,计划应用于我国空间站激光时间传递链路的探测模块,提供高精度高稳定度时间信号的传递与比对服务。2)针对单光子探测器的温度漂移效应,发展了两种稳定探测延时的方法。温漂被动补偿方案的温度漂移系数为7 fs/℃,适用于环境温度缓慢变化的应用场景,在20-40℃范围内变温,整个时间传递链路的时间稳定度可达到0.1 ps@300s。主动控制温漂方案的温度漂移系数为10 fs/℃,可用于环境温度无规律复杂多变的应用场景,在24-45℃范围内,不管温度如何变化,整个时间传递链路的时间稳定度均可达到0.15 ps@1000s。两种温度漂移补偿方案,为外场环境中的高精度与高稳定单光子探测提供了有效的解决方法。3)针对探测器短期稳定度提升难题,发展了一种多通道单光子探测方案,在不引入时间游动效应,不影响探测模块的精度,且不增加数据收集系统复杂程度的情况下,测得整个链路的精度为28 ps RMS,时间稳定度为0.03 ps@300s;根据我们的了解,该探测器模块的时间稳定性能在当前国际上处于最高水平,为高精度高稳定激光脉冲时间传递系统提供了一种新的技术方法。