论文部分内容阅读
射频前端是第五代移动通信(Fifth Generation Mobile Communication,5G)及现代雷达探测系统中举足轻重的一环。为解决传统通信系统中单元器件个数多、体积大、损耗高等问题,射频前端关键性器件正向功能融合方向快速发展。此外,提高通信系统的电磁兼容性成为优化系统、保障系统稳定的基石。本文聚焦于射频前端功能融合器件设计,并针对通信系统隐身及多输入多输出(Multiple-input Multiple-output,MIMO)天线去耦等电磁兼容问题进行探索研究。具体工作内容包括:(1)针对多系统兼容卫星导航系统,设计两款功能融合的圆极化接收天线。提出一款多模融合的宽带四臂螺旋天线(Quadrifilar Helix Antenna,QHA),不需引入额外的枝节或寄生辐射臂,直接通过改变辐射臂上缝隙的位置就可改变两个谐振点之间的距离,进而设计出宽带、半功率波束宽度(Half Power Beam Width,HPBW)宽、谐振频率独立可调的圆极化QHA;设计一款低剖面的圆极化微带天线(Circularly Polarized Microstrip Antenna,CPMA),采用旋转序列馈电技术设计宽带馈电网络,以此来提高CPMA的阻抗带宽和轴比带宽。另外,引入新型馈电条带来激励天线的环型贴片,使得辐射贴片的电场分布更加均匀,辐射效率更高。(2)加载新型电磁材料成为天线获得功能融合特性的演进方向。将超表面引入到微带缝隙差分天线中,使天线增加一个可独立调谐的谐振点,进而提高天线带宽。通过引入三线耦合馈电,使得该天线还具有滤波效果;对传统的Pancharatnam-Berry(PB)相位原理进行补充,设计了具有任意聚焦点的聚焦超表面,并提出超表面最小周期数的约束条件。在超表面的倾斜焦点处放置圆极化馈源,馈源结构不会对反射的电磁波造成干扰,馈源增益也可大幅提升;在传统的轴棱锥相位分布公式基础上添加广义斯涅耳反射定律所要求的相位分布信息。利用PB相位单元设计一款基于超表面的平面轴棱锥以代替传统的三维轴棱锥,使之能够产生可以倾斜到任意方向的无衍射波束。(3)针对空域滤波,设计功能融合的超表面频率选择表面(Frequency Selective Surface,FSS)、天线罩以及 rasorber。利用超表面设计FSS,每个FSS的单元尺寸不足十分之一个工作波长,角度稳定性在电磁波斜入射的情况下得以提升。通过等效电路理论证明该FSS上阻带里的两个传输零点可以被独立调节;利用石墨烯的复电导率动态可调特性,设计基于石墨烯的天线罩。通过合理控制天线罩中不同列的化学势,放置在天线罩中的偶极子天线可以获得波束可控的定向辐射方向图;基于奇偶模等效电路,设计一款宽带吸波器,然后将具有高品质因数(Quality Factor,Q)的陷波谐振器和与之工作频率一致的FSS引入其中,这使得原有的吸波器可以实现吸波-透波-吸波的频率选择特性,此时吸波器演变为rasorber。(4)对宽带MIMO天线及去耦技术进行研究,设计功能融合的MIMO天线。首先提出一款由多模缝隙谐振器和嵌入式阶跃阻抗谐振器组成的多模谐振器。然后采用共面波导(Coplanar Waveguide,CPW)的馈电方式,设计出基于多模谐振器的宽带单层缝隙MIMO天线单元。由于多模缝隙谐振器的奇模谐振接近低截止频率,嵌入式阶跃阻抗谐振器引起的谐振形成高截止频率。因此,没有利用任何额外的滤波结构便可使天线单元的工作频带实现滤波效果。最后引入弯曲地、中和线和发卡型谐振器来抑制MIMO天线单元之间的电磁耦合,实现了宽带去耦。