【摘 要】
:
近年来,自旋电子学器件及其材料是一个新兴研究领域,由于在磁储存器和自旋注入领域具有潜在应用价值,科研人员对自旋电子学材料的研究兴趣也日益增加。半金属材料便是一种潜在的自旋电子学材料。金属的自旋向上和向下的轨道都通过费米能级,两个方向都具有100%的自旋极化率;绝缘体的自旋向上和向下的轨道都没有通过费米能级,而且价带顶和导带底之间形成的带隙宽度大部分都超过一特定值。而半金属与以上两种材料存在很大区别
论文部分内容阅读
近年来,自旋电子学器件及其材料是一个新兴研究领域,由于在磁储存器和自旋注入领域具有潜在应用价值,科研人员对自旋电子学材料的研究兴趣也日益增加。半金属材料便是一种潜在的自旋电子学材料。金属的自旋向上和向下的轨道都通过费米能级,两个方向都具有100%的自旋极化率;绝缘体的自旋向上和向下的轨道都没有通过费米能级,而且价带顶和导带底之间形成的带隙宽度大部分都超过一特定值。而半金属与以上两种材料存在很大区别,其中一个自旋方向的电子轨道通过费米能级表现金属特性,另一个自旋方向的轨道具有一定宽度的带隙可以表现为半导体性质,并且这种结构也具有100%的自旋极化率,相对于传统磁性合金材料,具有这类能带结构的材料被认为是一种新型磁性材料。本文研究表明,过渡金属(Ti)掺杂四元Heusler合金可形成一种新型的自旋无带隙的半金属材料;过渡金属(TM)掺杂Si基和Ge基合金也可以形成DMH结构的半金属材料,并对这两类材料的电学以及磁学性质进行了详细分析。主要结论如下:(1)用第一性原理计算分析了由Ti原子代替自旋无带隙半导体四元Heusler合金Ti2Co Si形成的新型自旋无带隙半金属材料的电学和磁学性质。结果表明,当1/4的Co原子被Ti原子取代时,可以得到一种新型的自旋无间隙半金属材料。并分析了硼(B),铝(Al),镓(Ga),磷(P),砷(As)和锑(Sb)替代Ti2.25Co0.75Si合金中的Si元素后材料的特性,结果表明Ti2.25Co0.75Si0.5B0.5,Ti2.25Co0.75Si0.5Al0.5和Ti2.25Co0.75Si0.5Ga0.5是半金属铁磁性材料,Ti2.25Co0.75Si0.5P0.5,Ti2.25Co0.75Si0.5As0.5,和Ti2.25Co0.75Si0.5Sb0.5是自旋无带隙的半导体材料。(2)研究了掺杂3d和4d过渡金属(TM)的基态Si原子的电子结构和磁性,其掺杂方法分别是间隙位和替代位。一些3d过渡金属V、Cr、Mn、Fe、Co和4d过渡金属Nb、Mo、Tc掺杂的半导体硅具有相对较强的磁性能,并且在费米表面附近具有100%的自旋极化率。其中Fe,Zr,Nb,Mo元素替代位掺杂硅形成的合金表现出半金属特性,其余金属掺杂形成的合金具有金属的性质。计算结果还表明,3d过渡金属掺杂(TM)的Si基化合物比4d过渡金属(TM)掺杂Si基的化合物更具有磁性。(3)研究了3d,4d过渡金属(TM)通过替代的方式掺杂基态Ge原子的电子结构和磁学性质。掺杂的过渡金属均有一定的磁性,通过掺杂获得的DMH由于电子自旋跃迁而具有一定磁性,其中过渡金属d轨道和相邻的硅原子p轨道在一定程度上杂化。最终两个自旋方向形成不同的电子密度,从而表现出具有一定磁性,最终得出3d过渡金属掺杂的Ge基合金的磁性大于4d过渡金属掺杂合金的磁性。
其他文献
适当物理模型的引入和组合在物理学的许多不同领域中都取得了显著的研究成果。在本文中,我们主要考虑了狄拉克振子和Jaynes-Cummings(J-C)模型这两个物理模型。狄拉克振子是经典和量子物理学中应用最广泛的模型之一;J-C模型是量子光学中与狄拉克振子有密切关联的模型。这两个模型都是精确可解的量子模型,拥有着丰富的物理内涵,并且被广泛的运用在物理学的各个领域中,是量子力学、量子光学、激光物理等学
自从社会发展进入信息化时代以来,化学教学也紧随时代潮流不断发展变革。国家高度重视学生学习方式的转变和现代化教学手段的应用,将数字化手段应用到教学实践中,促进教育现代化建设已成为新的责任和使命。手持技术作为一种数字化信息化实验手段,因为具备便携、实时、准确、直观和综合等特点,正逐步被应用到中学化学课程的探索和开发中。利用手持技术的曲线表征,与“宏、微、符”三重表征有机结合的四重表征教学模式,在更新教
随着科学技术的迅速发展,微型零件的应用越来越广泛,在微电子等行业具有广泛的应用前景。塑性成形技术具有其它成形技术不具备的优势,如,批量生产、精度高、生产成本低等,因此在微型器件的研究过程中逐渐形成了一种新的成形技术-微塑性成形技术。该技术利用塑性变形的方式加工至少在两维尺寸下处于毫米级到微米级的微型构件,是制备微型零件最有潜力的方法。当材料尺寸减小到一定的程度,在成形过程中材料力学性能和物理性能等
TC4(Ti-6Al-4V)钛合金由于其密度低,比强度高,耐腐蚀性好,高断裂韧性和优秀的生物相容性等,而广泛应用于生物医学和航空航天工业。但是钛合金由于熔点高,变形抗力大等特点,使得加工难度大,从而导致了钛合金制件的高成本,阻碍了其广泛应用。激光选区熔化成形技术(SLM)作为一种快速制造工艺,通过增材方法可以直接成形复杂结构零件,正逐渐受到国内外钛合金研究者的关注。因此,系统、准确地表征SLM成形
固态再生作为一种新型的废弃金属回收概念,因其具备能耗低,环境友好的特点,正逐渐受到更多研究者的关注。目前,已经提出多种利用粉末冶金和大塑性变形的方式,对废弃金属进行回收,制备的再生材料不仅实现了废屑的固结,还因晶粒细化、第二相强化等因素,使再生材料的性能优于原材料。然而,目前在的有色金属回收领域内,依然主要依靠传统重熔回收的方式,对废弃金属进行重利用,该方式不仅造成能源的大量消耗,还对生态坏境带来
等离子体是多粒子体系,广泛的存在于宇宙空间中,当等离子体系统处于非平衡态时,即系统中存在密度梯度、温度梯度和速度梯度时,就会出现相应的粒子流、能量流和动量流等,使等离子体经历一个不可逆过程而达到平衡,这个过程就叫做输运过程。等离子体输运性质的研究是等离子体物理研究的关键内容之一。过去人们都是在经典玻尔兹曼-吉布斯统计力学的框架下来研究等离子体输运性质的,并且认为等离子体中粒子的分布函数是麦克斯韦分
流体运动为何、何时以及如何偏离其有序状态而表现出更为复杂的湍流行为一直受到科学家们的关注,鉴于超疏水表面在自然界广泛存在且在工程中的应用越来越广泛,研究超疏水表面上流动的转捩问题有着重要意义。在超疏水表面上通常的无滑移边界条件不再适用,而需采用滑移边界条件。本文主要研究了速度滑移边界条件下槽道流动的线性稳定性和瞬态增长问题,从而探讨其对层流向湍流转捩的潜在影响。我们将流向滑移和展向滑移分别作为各向
7xxx铝合金已被广泛地应用于航空航天领域,随着先进航空航天装备的不断发展,对7xxx铝合金提出了更高的要求。科研工作者通过优化成分和形变热处理过程开发出了多种新型的7xxx铝合金。结合相关研究现状,本文主要研究二次挤压变形对7075铝合金组织性能的影响。具体研究内容包括:(1)均匀化退火及一次、二次挤压过程中7075铝合金组织性能的演变;(2)不同温度固溶处理对一次和二次挤压7075铝合金组织性
复合算子是作用于各种函数空间上非常重要的一类算子,近年来,关于函数空间上复合算子理论的研究一直是国内外数学工作者关注的热点.复合算子最基本的研究内容是对作用在不同函数空间上的复合算子的有界性、紧性、本性范数、谱等一系列性质进行描述.本论文主要研究两部分内容,其一,研究在单位圆盘上的加权Bergman空间上的复合算子的复对称性;其二,刻画单位圆盘上加权Zygmund-Orlicz空间上复合算子的有界
布朗运动的研究一直以来都是微尺度流固耦合领域的经典问题,其广泛存在于自然界和人类生活之中。布朗粒子在悬浮液中的运动主要受粒子间相互作用以及流体动力学作用的影响。我们基于加入热扰动的流固耦合模型,同时考虑了流体动力学特性和布朗效应,采用随机欧拉拉格朗日方法用来模拟悬浮液中布朗粒子的运动特性。我们考虑了硬球和软球两种模型,分别用于模拟不同性质的粒子。我们根据布朗粒子均方位移随时间的变化规律,针对两种模