论文部分内容阅读
纳米TiO2的应用领域越来越广泛,该材料在其生产和使用过程中不可避免的会与生物系统和生态环境接触,由此将可能对人体及生物产生影响。本文系统研究并分析了TiO2纳米粒子和纳米管的体内和体外生物毒性、对原核微生物的抗性和作用机理、以及纳米TiO2光催化抗菌剂在抗菌复合材料中的抗菌性能及抗菌机理。主要研究工作包括下列内容:(1)采用水热法制备了TiO2纳米粒子和TiO2纳米管,通过透射电镜(TEM)、X射线衍射仪(XRD)、傅立叶红外光谱分析仪(FT-IR)和拉曼光谱仪(Raman)等方法对制得的粉体进行了微结构表征。结果表明,TiO2纳米粒子的粒径为100nm,TiO2纳米管的管径为10nm,管长200nm左右,XRD显示TiO2纳米粒子为锐钛矿型结构,而TiO2纳米管为锐钛矿和金红石的混合晶型,红外光谱结果表明纳米TiO2表面无其它修饰基团。(2)用气管滴注法对小鼠分别进行了TiO2纳米粒子和纳米管染毒,在不同的时间对小鼠肺泡灌洗液、血清酶学指标检测和肺组织切片病理观察,结果表明两种材料均对肺脏组织产生损伤,但是从肺泡结构的完整性以及组织变厚的程度看,在相同剂量下纳米粒子组比纳米管组的危害更严重,引起肺组织细胞膜的损伤和脂质过氧化程度升高,肺部毛细血管的屏障作用未受到大的影响;这种染毒方式对小鼠肝脏、心肌组织、肾脏都产生不同程度的损伤。(3)通过小鼠腹腔巨噬细胞分别与TiO2纳米粒子和纳米管直接接触染毒,观察不同时间巨噬细胞的形态,检测细胞的存活率以及细胞上清液中MDA,LDH,GSH的含量以评价TiO2纳米粒子和纳米管的体外细胞毒性。研究结果表明:TiO2纳米粒子能被巨噬细胞吞噬,对巨噬细胞形态有明显的影响,在不同染毒时间内对巨噬细胞造成急性损伤作用程度不同,存在着浓度-效应关系;TiO2纳米管不能被巨噬细胞吞噬,对巨噬细胞形态影响并不明显;TiO2纳米粒子和TiO2纳米管接触培养的细胞上清液中MDA,LDH,GSH的变化均随染毒时间和浓度而改变,可见TiO2纳米粒子和TiO2纳米管均导致了细胞氧化应激并因此产生毒性损伤。(4)考察TiO2纳米粒子和纳米管在无光照条件下的抗菌性能,结果发现在相同剂量、相同的接触时间,对大肠杆菌(Escherichia coli)和金黄色葡萄球菌(Staphylococcus aureus)TiO2纳米粒子比纳米管具有更好的抗菌性能。因此,采用溶胶凝胶法制备了平均粒径为30nm氮掺杂TiO2纳米粒子。比较了未掺杂二氧化钛纳米粒子和氮掺杂二氧化钛纳米粒子在黑暗条件和可见光照射条件下分别对大肠杆菌和金黄色葡萄球菌的影响,结果发现:大肠杆菌和金黄色葡萄球菌分别与二氧化钛纳米粒子接触培养2小时后,其在黑暗条件下的存活率均高于其在光照条件下的存活率,但未掺杂二氧化钛纳米粒子的存活率下降值远小于氮掺杂二氧化钛纳米粒子的存活率下降值,说明可见光照射对氮掺杂纳米二氧化钛的杀菌率有明显增强作用。(5)将制得的氮掺杂的二氧化钛纳米粒子作为抗菌剂,加入PP复合材料中,采用熔融共混法制得TiO2纳米粒子不同含量的PP复合材料,对所制备的不同含量TiO2纳米粒子的PP复合材料的微观结构、力学性能以及抗菌性能进行测试。结果表明:当TiO2含量为2wt.%时,纳米TiO2/PP复合材料的综合力学性能最好;纳米TiO2/PP复合材料的冲击断口形貌为脆性断口,纳米TiO2添加到PP中可提高复合材料的力学性能;抗菌性能测试发现,与纯PP材料相比,纳米TiO2/PP复合料在光照条件下的抗菌性能明显优于纯PP材料。本文的上述研究结果进一步揭示了纳米TiO2材料的生物毒性、光催化杀菌性能及其机理,对于评价纳米材料的环境和健康风险,保证纳米技术产业的可持续的发展具有理论指导意义,为进一步研究具有广泛应用前景的聚合物基纳米抗菌复合材料的工作奠定了一定的理论基础,积累了一些实验经验。