【摘 要】
:
过氧化氢(H2O2)是有广泛应用价值的化学试剂。工业中H2O2的生产主要是蒽醌氧化法,但此生产过程只能大规模运行,并且存在排放废气、废水的问题。与之相对的一种更加安全高效的合成方法就是电化学氧还原反应合成方法(ORR)。但由于金属催化剂的制造成本高,非金属纳米碳材料以高丰富度、高电化学稳定等特性被应用于电催化氧还原制备H2O2。在此过程中,调节电化学氧还原反应路径和提高H2O2产量是研究重点。本文
论文部分内容阅读
过氧化氢(H2O2)是有广泛应用价值的化学试剂。工业中H2O2的生产主要是蒽醌氧化法,但此生产过程只能大规模运行,并且存在排放废气、废水的问题。与之相对的一种更加安全高效的合成方法就是电化学氧还原反应合成方法(ORR)。但由于金属催化剂的制造成本高,非金属纳米碳材料以高丰富度、高电化学稳定等特性被应用于电催化氧还原制备H2O2。在此过程中,调节电化学氧还原反应路径和提高H2O2产量是研究重点。本文对纳米碳黑材料进行改性,得到具有不同氧含量的纳米碳黑材料。通过TEM表征显示出改性前后碳黑材料的骨架结构没有变化,XPS数据显示随材料的氧化温度的升高,其氧含量明显增加。将改性后的碳黑材料作为氧还原电催化剂进行电化学测试,实验结果表明,催化剂中氧含量的增加会提高氧还原反应的热力学性和动力学性能。氧含量越高,二电子氧还原反应(2e-ORR)的选择性越好,纳米碳黑材料中羧基官能团是二电子路径的活性位点。通过在无金属纳米碳表面反应的原位静电调制,可以实现H2O2的高度选择性电合成。在碱性条件下,阴离子表面活性剂对氧还原反应具有抑制作用,而阳离子表面活性剂可促进二电子氧还原反应产生H2O2。碳黑(CB)作为催化剂,阳离子表面活性剂作为氧还原产生过氧化氢(O2P)的动力学促进剂,可使过氧化氢生成的百分比(%HO2-)高达95%。当纳米碳材料作为氧还原反应催化剂时,阳离子表面活性剂对O2P的促进作用具有普适性。碳黑表面的羧酸官能团(-COOH)是主要的O2P反应位点,在原位库仑调制下,可利用阳离子表面活性剂提高过氧化物选择性。虽然材料表面羰基(-C=O)也有助于产生过氧化物,但它与过氧化物(HO2-)结合强烈,因而使过氧化物继续被电催化分解。实验结果进一步表明,晶格中饱和或未饱和的缺陷不是选择性电合成的关键因素。在计时电流法实验中,以阳离子表面活性剂存在条件下的碳黑作为催化剂体系时,电流密度为1.8 mAcm-2时,%HO2-高达94%。
其他文献
在实际生产问题中,针对航空用铝合金在连接上的技术难点问题,如铆接和传统熔焊后出现的连接缺陷,采用搅拌摩擦焊(FSW)这种固相连接技术来提高连接焊后表面成型及接头质量。具体焊接参数范围是影响同种铝合金FSW焊接效果的最主要影响因素,但是对于异种型号不同强度铝合金FSW焊接来说,由于不同系列不同型号的铝合金材料本身属性上的差异,导致同一焊接参数下得到的焊接结果会有很大不同;并且焊接方式,如搅拌针偏置位
40Cr钢是合金结构钢,因其具有良好的冲击韧性和抗拉性能等,目前广泛的应用在我国的机械制造业中,主要用来制造轴类零件。但由于内部容易出现网状铁素体组织,极易发生断裂。本文对40Cr钢的高温变形、连续冷却转变、轧制工艺和热处理工艺进行研究,分析组织转变,铁素体含量变化以及性能的变化规律。主要研究工作如下:(1)通过单道次压缩实验对实验钢高温变形行为进行了研究,得到了实验钢在不同工艺下的应力-应变曲线
随着经济全球化的进一步发展,越来越多国家(地区)为推动当地贸易的发展,纷纷开始建设自由港。自由港属于特殊的世界自由经济区,不受惯常的海关管辖,且拥有独特的税收制度与税收政策,其中,离岛免税政策就是在自由港实施的一种特殊的税收优惠政策。离岛免税政策也是海南自由港实施的核心税收优惠政策,被赋予了重大意义。2020年是海南自由港正式建设的开局之年,2021年更是离岛免税政策实施的第十年以及十四五规划的开
高温合金因其性能优越,在服役工况恶劣的大型工业领域被得到广泛应用,但目前对其的研究还不够完善。本文以镍基高温合金GH3536锻件作为原材料,通过电火花线切割、真空电子束焊、抛光等加工工艺,将其制成厚度为1.5mm的标准焊接试验试样,展开试验研究。通过对试验结果处理分析,有以下结论:(1)GH3536合金锻件母材晶粒呈现不规则多边形形状,分布均匀且密集,而焊缝区域晶粒尺寸大于母材晶粒,呈长条状;(2
轻量化、电动化、智能化是汽车技术发展的主要方向,提高材料强度可在保证安全的前提下通过减薄材料厚度实现轻量化。强度超过1500 MPa的热冲压钢是目前强度最高、应用最多的车身用高强度钢。Al-Si镀层技术可避免板料在热冲压成形过程中的高温氧化和脱碳,同时确保成形后的零件具备较好耐蚀性,目前Al-Si镀层板在热冲压钢应用占比超过60%。但是,现有Al-Si镀层热冲压钢板弯曲断裂应变还有待提高以满足进一
镍基高温合金具有良好的高温强度,抗氧化性,抗腐蚀性能等综合性能,广泛的应用于航空、航天和核电等领域。镍基高温合金主要通过固溶强化和沉淀强化来提高材料的高温强度,但是当服役温度大于1000℃时,γ’相的溶解会降低材料的高温强度,限制了高温合金的使用范围。氧化物弥散强化可进一步提高镍基合金的高温强度。本文采用机械合金化和热等静压烧结方法,制备出ODS-Ni20Cr4.5AlxTiyZr合金。系统的研究
为降低成本,资源多元化是镍电解精炼的发展趋势。现有金属镍生产的原料主要来源于矿的冶炼,但镍合金的回收已逐渐成为其资源的一部分。废的飞机发动机叶片镍基单晶高温合金含镍在50%以上,可作为较好的镍资源进行回收。由于火法冶炼过程中会有很多有价元素损失,目前科研人员一直在努力开发湿法工艺以减少有价元素的损失。本论文提出将废的飞机发动机叶片DD5、DD6镍基单晶高温合金作为资源进行湿法处理回收,研究其溶解液
氧化铝生产工艺近年来发展迅速,但由于开采效率低、氧化铝提取效率低等问题,导致我国氧化铝资源保有量大幅减少,到目前为止,中国可采储量为8.3亿吨,占全球总储量的3%,与此同时由于我国氧化铝生产工艺的不完善,导致了赤泥的钠碱含量较高,进一步造成一系列经济问题和环境污染问题。为跟随国家铝土矿资源发展规划,解决生产氧化铝工艺带来的一系列衍生问题,东北大学特殊冶金与过程工程所提出了后加钙-钙化碳化法生产氧化
作为一种二维碳材料,石墨烯具有优异的机械、电学、光学、热力学和化学性能,同时还可以与其他材料复合得到功能复合材料,因此在材料、电子、样品预处理以及传感等领域中得到了广泛应用。本论文制备了两种不同的石墨烯基复合材料,并对他们在双酚A(BPA)萃取分离与传感中的应用进行了系统研究。论文首先利用石墨烯具有大的表面积的特点,通过单体介导的方式将共价有机骨架材料TpBD修饰在氧化石墨烯(GO)表面得到TpB
等通道转角挤压(Equal Channel Angular Pressing,简称ECAP)技术是目前制备超细晶材料最有效、最快速的手段之—,它是通过剧烈塑性变形来达到细化晶粒和提高材料力学性能的目的。本文采用通道夹角为120°模具成功实现纯钛的室温ECAP6道次变形,并结合室温冷轧和道次间液氮冷却的低温冷轧的复合变形来获得不同压下量的超细晶试样。此外,本文采用通道夹角为90°的模具,在350℃条