论文部分内容阅读
大豆是重要的油料作物之一,对水分需求敏感,系统的研究水分胁迫历时、灌溉水平对大豆生长发育及产量的影响,对科学合理的设计灌溉,提高大豆产量,节水抗旱具有重要的理论和现实意义。本试验于2010-2012年进行,采用框栽方法,在玻璃防雨棚内进行灌溉,灌溉量以哈尔滨市1995-2009年大豆生长季平均降雨量为参照,试验品种为绥农14、嫩丰18、合农60、黑农48。建立土壤含水量的时间序列模型及统计模型;同时研究阶段性水分胁迫及不同灌溉水平对大豆株高、干物质与氮磷钾元素积累及产量的影响。结果表明:土壤含水量变化受灌溉量与水分胁迫历时的影响。灌溉量影响土壤含水量峰值,呈阻滞增长模型关系,随着灌溉量的增加,土壤含水量逐渐趋近于峰值37%左右。水分胁迫历时影响土壤含水量走势,呈指数衰减函数关系,当水分胁迫历时为24天时,土壤含水量平均下降7%左右,随着水分胁迫历时的增加,土壤含水量继续下降并趋近于13%,逐渐达到平稳状态。建立了土壤含水量时间序列模型、灌溉量对土壤含水量峰值的影响模型、灌溉量及水分胁迫历时对土壤含水量影响的二元统计模型,模型拟合效果良好。(1)土壤含水量的时间序列模型为指数衰减模型,利用时差相关分析对土壤含水量数据进行拼接,得到模型表达式为S=23.786e0.041T+13, T∈[T0,T0+ΔT],模型检验结果显著,拟合程度良好。该模型可以预测水分胁迫历时T天之后的土壤含水量,可以利用该模型判断降水或灌溉后土壤含水量的变化趋势,并对土壤含水量进行预测,从而为水分胁迫一定时间之后是否需要灌溉提供决策参考。(2)土壤含水量峰值与灌溉量的函数关系为阻滞增长模型,得到模型表达式为S0=37/1+1.48e0.60W,模型的拟合程度良好。该模型可预测某一降雨量或灌溉量下的土壤含水量峰值,并与灌溉初始时刻的计算函数T=1/0.041In S-13/23.476、土壤含水量的时间序列模型相结合,构建灌溉量、水分胁迫历时对土壤含水量的回归模型,从而根据降水量或灌溉量对灌溉T天之后的土壤含水量进行预测。(3)构建了水分胁迫历时对土壤含水量影响的统计模型,灌溉量与土壤含水量峰值之间的关系可以表示为相关系数为0.485的二维正态分布。根据以上两个统计模型,可以对降水量或灌溉量为W,水分胁迫历时T天之后的土壤含水量达到某一数值的概率进行计算,统计模型的计算结果比确定性模型更加有效。水分胁迫对大豆株高有明显的影响。苗期和花荚期长时间的水分胁迫均抑制绥农14株高的生长,轻度的水分胁迫不会影响株高。苗期长时间水分胁迫抑制大豆第5-8节的生长发育,花荚期长时间水分胁迫抑制大豆第6-15节的生长发育。灌溉水平对大豆株高的影响因品种而异,绥农14、嫩丰18均表现为较低的灌溉水平抑制株高的生长,合农60大豆株高对灌溉水平不敏感。水分胁迫对大豆干物质积累和氮磷钾元素积累有很大的影响。苗期、花荚期和结荚鼓粒期长时间的水分胁迫均抑制大豆干物质和氮磷钾的积累。不同灌溉水平对绥农14、嫩丰18、合农60的干物质和氮磷钾的积累影响规律相同,均表现为灌溉水平越高,大豆干物质和氮磷钾积累量越高;花荚期与结荚鼓粒期水分胁迫历时越长、同时灌溉水平越低,大豆的干物质和氮磷钾积累量越低。水分胁迫对产量的影响因不同生育阶段而异。苗期水分胁迫处理对绥农14和黑农48大豆产量的影响表现为轻度的水分亏缺不会使其减产,但长时间水分胁迫造成了大豆产量的降低。绥农14花荚期水分胁迫大豆产量随水分胁迫天数的增加呈单峰曲线变化,黑农48产量随水分胁迫天数的增加呈递减趋势,中度和重度水分胁迫处理的产量显著降低。结荚鼓粒期水分胁迫处理的绥农14和黑农48产量随水分胁迫时间的延长呈下降趋势,绥农14的18天和24天水分胁迫处理的产量显著降低;在大豆的结荚鼓粒期,灌溉水平越低,水分胁迫处理历时越长,对产量的影响越大,中度和重度水分胁迫处理显著降低大豆的产量。