可控氧化锌纳米线的生长及光学特性研究

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:HUANJIAN666
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
氧化锌(ZnO)一维纳米结构作为宽禁带直接带隙半导体具有优异的性能:包括大禁带宽度(3.37e V)、室温下激子束缚能高达60me V、对紫外光敏感可见光范围内几乎无响应等特点成为日盲光电探测的理想材料。因此对于ZnO一维纳米结构的研究不仅有助于紫外光电探测器的应用,同时对研究ZnO纳米线的光学特性有着重要的指导作用。本文在利用水热法生长ZnO纳米线的基础上,通过分析不同生长因素的影响在[0001]方向生长了直径可控的纳米线阵列。在此基础上分析和测量了水热法生长不同直径ZnO光学特性;为最终实现不同直径ZnO纳米线制备紫外探测器提供了实验基础。本文选用水热法作为一维ZnO纳米线的合成方法,重点通过控制前驱体浓度、反应时间、反应温度、PH值等来分析ZnO纳米线生长状况,通过优化生长参数得到直径可控的ZnO纳米线阵列;使用扫描电子显微镜(SEM)、原子力显微镜(AFM)对ZnO一维材料进行表征。同时通过不同退火温度来研究种子层对于生长ZnO纳米线的影响;最终制得直径约为50nm、100nm、150nm、180nm和200nm的ZnO纳米线阵列,并在[0001]表面有很好的取向性。在水热法制备不同直径ZnO纳米线阵列的基础上,利用光谱仪、X射线衍射等手段对ZnO纳米线进行表征,实验测得在ITO基底上生长的ZnO纳米线阵列随着直径的增加紫外发光峰值出现红移,直径约为50nm的阵列吸收峰值对应波长约为379nm;直径为200nm时此时吸收峰值对应波长为384nm;相较于本征块状ZnO材料368nm有明显红移现象。同时在红光及蓝绿光也观察到吸收峰值,但并没有明显红移。此外通过光致发光(PL)观测到随着ZnO纳米线直径的增加,紫外发光强度减弱。在基于水热法制备直径可控的ZnO纳米线基础上,通过悬涂PEDOT、蒸镀Ag电极形成ITO-ZnO-PEDOT-Ag结构紫外光电探测器;通过对三种不同ZnO纳米线直径的器件进行测量发现,直径为50nm的ZnO紫外光电探测器光响应时间较短,上升时间约为7.1s,衰减时间约为3.5s;同时光电流与暗电流之比可达270。在不施加外界电压的情况下同样检测到光电流产生,不同直径ZnO纳米线阵列吸收波长红移现象也可用来制备高精度定波长紫外探测器,这为紫外探测器的高精密应用提供了参考。
其他文献
压电陶瓷被广泛应用于航空航天,柴油机动力装置等领域。其在飞行器模型变温及连续式风洞中,可有效抑制复杂强流场条件诱发的低刚度、低阻尼悬臂支撑系统产生的低频大幅振动。然而大幅温变极易干扰压电陶瓷作动器的输出特性,进而影响其在航空航天领域的准确输出,甚至造成系统损坏。因此探究变温条件下压电陶瓷作动器的输出特性对其在航空航天领域的应用至关重要。本文针对变温条件压电陶瓷作动器的输出特性的理论缺失、输出特性难
在当前的异构蜂窝网络中,干扰是限制其性能提升的一个主要因素,因而急需对其进行有效的管理。本文从下行异构蜂窝网络中不同种类通信间的相互干扰管理问题出发,提出基于排斥区域的干扰管理策略,并利用随机几何理论建立与所提策略相匹配的网络模型对其有效性进行充分评估。具体内容如下:首先,在设备到设备(Device-to-Device,D2D)与传统蜂窝通信构成的异构蜂窝网络中,本文提出基于排斥区域的干扰管理策略
光学近完美吸收器在等离激元超材料领域已取得了巨大进展,从无线电到光学的各波段下都有相应的应用。其中,中远红外(MF-IR)区域(8~14μm)是电磁波段中具有高透明度的大气窗口波段。可覆盖该区域的宽带,近完美吸收器件在热成像技术、热红外光源、光电检测和辐射热测定等领域的应用潜力巨大。随着等离激元超材料技术的不断发展,宽带红外近完美吸收器(Broadband Infrared Near-Perfec
碳化硅(SiC)MOSFET器件凭借开关速度快、泄漏源电流低和功率密度高等优点,被运用于新能源汽车和国防军工等高温高压大功率的工作领域中。但是,在不同偏压温度应力下,SiC MOSFET呈现出复杂的漂移特性,阈值电压(Vth)不稳定性成为阻碍SiC MOSFET被广泛应用的关键问题。现有的Vth漂移测试技术都是方法本身在不同偏压温度应力条件下的纵向对比,无法作为评价Vth不稳定性的标准测试技术。本
近年来,随着集成光电子技术的发展,微环谐振器引起了广泛的关注。其结构简单、占地面积小、集成度高且应用潜力大。得益于先进制造工艺的发展,以及微环突出的非线性特性,使得微腔光频梳技术成为研究热点。通过设计制备具有高品质因子、低损耗和高克尔非线性效应等特性的微环谐振器,可以进一步实现光频梳的激发。本文就针对能够满足集成光频梳产生要求的微环谐振器展开了设计与研究工作,深入探究了微腔光频梳的产生机制、理论模
介绍了由2台Φ4.8 m×9.5 m球磨机和2台160-140辊压机组成的两套双闭路水泥联合粉磨系统,在产销旺季时,1#线辊压机辊面出现严重脱落,急需在线堆焊,2#线磨机出料篦板出现严重磨损,急需更换。在设备维修时间长、水泥库存量不够的情况下,采取了双线交叉运行的生产工艺模式。技改后不仅实现了产量提高、电耗降低,还为设备检修争取了时间。同时,灵活多变的一辊带一磨、两辊带一磨和一辊带两磨的工艺模式,
在对外太空的探索中,用于宇宙射线探测的半导体探测器的输出信号比较微弱,必须搭配前置放大电路使用。近几年第三代半导体正飞速发展,GaN基器件相比于传统的Si基器件具有耐高低温、抗辐照的特性,更适合应用于空间粒子探测器的前置放大电路。本文主要针对空间粒子探测器前置放大电路的AlGaN/GaN高电子迁移率晶体管(HEMT)器件,进行高温条件下的小信号等效电路模型参数分析。本文回顾了晶体管小信号建模的研究
动态实验已经广泛的应用在模拟振动、疲劳破坏、强度分析等工程领域,随着研究的深入推进,动态实验结果的准确性越来越成为关注的焦点。动态力实验中最核心的部分就是动态力源,动态力源的精度与动态力实验的准确性息息相关,现有的动态力发生方式存在力的方向精度较低、易过载、引入非线性误差等问题。若想保证动态力实验的准确性,高精度、可控可调的动态力发生装置就显得至关重要。本文以新型高精度动态力源为研究目标,设计研制
随着移动互联网的迅速发展,室内定位技术也取得了一定的进步。在室外,能够提供基于位置的服务(Location-Based Service,LBS)的全球定位系统(Global Positioning System,GPS)已经发展的很完善,被应用在交通、农业、军事等诸多领域。然而由于GPS信号在室内会严重衰减,所以无法被应用到室内定位领域。因此找到一种合适的信号,并能够实现高精度的室内定位具有重要的
酶联免疫吸附试验(ELISA)是目前流行的检测生物标志物的实验室技术,这种方法的优点是敏感性和特异性比较高。然而,ELISA需要较大强度的人力劳动和耗时的程序,需要训练有素的操作员和专门的检测室。在资源有限的情况下,简化程序和设备的小型化对于基于ELISA的护理点检测(POCT)至关重要。在本研究中,我们提出了一种自动化的、低成本的便携式POCT平台,它使用自动化泵阀控制试剂按照要求进行流动,从而