利用重离子碰撞研究原子核内核子的短程关联及高动量分布

来源 :南京大学 | 被引量 : 0次 | 上传用户:zgl_0251
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
原子核内核子之间的短程关联及其对核子动量分布的影响是近年来人们关注的一个热点问题。传统的壳模型认为原子核内的每个核子都处在一个与其他所有核子共同作用而产生的平均场中做近似独立粒子运动,因而核子的动量不能超过费米动量(k<kF)。然而随后的质子敲出实验却指出只有60-70%的核子满足这种独立粒子运动,这显然有悖于壳模型图像。近年来进行的高能电子散射实验则进一步指出,原子核中普遍存在着同位旋依赖的核子-核子短程关联对,即质子-中子关联、质子-质子关联及中子-中子关联,其中质子-中子关联对占主导地位(np-dominance),这种由张量力导致的关联核子对之间具有大的相对动量和小的质心动量,使得一部分低动量核子(k<kF)获得更高的动量(k>kF),从而在核子动量分布中产生一个高动量尾巴。短程关联及其导致的高动量尾巴对核结构与核天体物理中的许多问题,如核物质对称能、中子星的结构及状态方程等都会造成显著影响,这方面的研究也在如火如茶的进行。基于目前实验和理论上的一些进展,本文我们将在同位旋依赖的Boltzmann-Uehling-Uhlenbeck(IBUU)模型的框架下,利用重离子反应来研究核子之间短程关联及高动量尾巴。通过比较和分析在考虑与未考虑高动量尾巴效应下的模型计算结果,进而去寻找实验上敏感于高动量尾巴的观测量。首先第二章介绍了目前常用的描述中能重离子碰撞的微观输运模型。在第三章,根据一些实验事实及理论研究,如由于质子-中子短程关联对的主导地位,在丰中子核内质子拥有高动量(k>kF)的几率大于中子;理论和实验指出,高动量尾巴的分布形式为~1/k4;微观计算显示同位旋不对称度δ与动量分布的高动量组分之间近似呈线性关系,我们获得了考虑核子-核子短程关联效应之后,核物质核子动量分布的参数化形式n(k)。进一步结合局域密度近似,得到了有限核的核子动量分布,并在IBUU输运模型中加入了这种高动量的核子动量分布。计算结果显示当考虑短程关联后,核子动量分布中明显出现一个高动量尾巴。第四章基于合并了高动量尾巴效应的IBUU输运模型,我们模拟了束流能量为50 MeV/nucleon及140 MeV/nucleon的对称核系统12C+12C和非对称核系统124Srn+124Sn的碰撞反应,计算表明高动量尾巴效应能明显增加高能自由质子和自由中子的产出几率,并且高能核子的出射几率会随着束流能量的提高而增加,但是高动量尾巴在高能核子排放中的效应却有所减弱,这是由于越高的反应能量,会导致短程关联的作用在核子碰撞过程中相比其他作用影响越低。对于高动量尾巴效应对核反应中的韧致辐射光子产出的影响,我们也模拟计算了 112Sn+112Sn,124Sn+124Sn和197Au+197Au三个体系的碰撞反应。结果表明反应产出的质子-中子韧致辐射光子非常敏感于原子核动量分布中的高动量成分,核子动量分布中的高动量尾巴可以导致丰中子核中高能韧致辐射光子产出量的显著增长。对于不同的平均场势,反应中硬光子的产出会有一定的差异,但是光子发射的高动量尾巴效应却都很明显。不同平均场下光子产量之所以不同,是因为韧致辐射光子来自于核子之间的散射,不同的平均场导致核子受到的力不同,因而会直接影响到核子的散射过程,最终影响到反应中光子的产额。为了减小反应模拟中的不确定性,如光子产出几率和核子散射截面以及系统误差,同一反应体系在不同束能下的双微分光子产出几率之比Rp及不同反应体系在同一束能下的双微分光子产出几率比Rp’被提出作为潜在的敏感探针来研究核子之间的短程关联及其导致的高动量尾巴。核物质对称能也是人们关注的一个热点问题,其在重离子核反应动力学、非对称核物质状态方程等方面以及天体物理领域中的核素合成和中子星的结构与演化等方面具有的重要影响。在考虑了高动量尾巴效应的IBUU模型的基础上,我们也讨论和分析了利用质子-中子韧致辐射光子作为对称能敏感探针的可能性。第五章模拟了束流能量为50 MeV/nucleon的132Sn+124Sn和40Ca+40Ca两个系统的反应,讨论了在考虑与不考虑高动量尾巴两种动量分布情况下,质子-中子韧致辐射光子的产出情况并进一步分析了其对核对称能的敏感性。通过对不同的对称能下光子的产额及其能量的几率分布可知,无论有没有考虑短程关联效应,韧致辐射光子的产出都不敏感于对称能。然而两个不同系统的光子产出比R,不仅敏感于原子核的高动量尾巴,同时也敏感于核对称能,甚至在考虑高动量尾巴效应后,核对称能对硬光子产出比的影响会进一步增大,这可能是由于比值降低了光子产出的介质效应的影响以及光子产出几率模型所导致的差异,从而使得光子产出的对称能效应显现出来。另外,相比于不考虑高动量尾巴的情况,在考虑短程关联导致的高动量成分后,光子产出比有所降低,这是由于核子动量分布中的高动量组分主要由质子-中子关联导致,因而高动量尾巴效应对光子产出的影响会随着同位旋不确定度占的增加而减弱。最后,在第六章中,我们对本文涉及的工作进行了总结,并对以后可能的研究方向作了展望。
其他文献
在标准模型中,描述夸克混合的Cabibbo-Kobayashi-Maskawa(CKM)矩阵一直是非常重要和基础的内容之一。半轻(纯轻)衰变因为其较大的分支比和简单的衰变形式为人们广泛研究。在半轻(纯轻)衰变中,强相互作用和弱相互作用可以很好的分离开来,通过研究衰变率提取出表征强相互作用的参数化形状因子(衰变常数)和夸克混合矩阵元,分别为描述强相互作用的QCD计算和夸克混合CKM矩阵元幺正性的检验
近年来,对磁阻挫系统的研究已成为凝聚态领域的研究热点,这是因为这些系统中的阻挫相互作用会造成很多新奇的量子相,比如量子自旋液体。量子自旋液体最早是由安德森提出,是一种高度纠缠的磁无序量子态。作为量子自旋液体的重要分支,Kitaev自旋液体起始于Kitaev提出的定义在蜂窝格子上严格可解的自旋1/2Kitaev模型。此模型具有依赖于化学键方向的自旋相互作用,从而造成强量子阻挫,进而诱导形成22自旋液
本文介绍一种商用车铅酸蓄电池状态监控系统的开发,系统实现蓄电池传感器实时采集蓄电池状态参数信息,并通过TBOX将数据上传至后台服务器,进行数据存储分析及报警判断,并将亏电报警信息推送给手机客户端,提醒用户注意。同时,系统根据蓄电池SOC值的限值判断,进行电磁开关的切断控制,以保证车辆的正常起动。
学位
目前我们已知的组成这个世界最微小的基本粒子是夸克,毋庸置疑,对夸克的深入研究有助于解开物质起源之谜,对我们更加深入的理解我们所处的这个宇宙至关重要。逐步发展起来的量子色动力学(QCD)已被广泛的接受为研究强相互作用物质的基本理论,我们最理想的结果是从QCD所描述的六种基本夸克及其之间传递强相互作用的胶子来获得关于整个强相互作用世界的信息。然而由于QCD的渐进自由这一神奇性质,在低动量转移区域,夸克
准噶尔盆地东南部吉木萨尔凹陷二叠系芦草沟组发育重要的烃源岩和致密油储层,并形成了中国最大、最有潜力的致密油田之一。目前,对这套致密油储层特征、成因和成藏机理的研究还较为薄弱。本次研究以典型钻井岩心样品为主要研究对象,进行了岩石学、矿物学、稳定同位素地球化学和有机地球化学等多学科的综合研究,得出以下几点初步认识:(1)芦草沟组致密油储层是一套由碳酸盐矿物、陆源碎屑和火山物质等组成的湖相混积岩。其岩石
宇宙学中最具挑战性的问题之一是理解晚期宇宙加速膨胀背后的物理机制。现在已经有许多的观测被用于探测这种正加速度背后的机制,如高红移Ia型超新星(SNeIa),宇宙微波背景辐射(CMB),星系团,重子声波振荡(BAO)等。这些工具基于一个基本假设,即光子总数在宇宙尺度上是守恒的。这是宇宙距离对偶(cosmic distance duality,CDD)关系DL/DA(1+z)2=1成立的关键假设之一,
人类的发展历史中很重要的一部分就是对信息传递、处理手段的发展。古时候的人们只能用信鸽、烽火等原始手段传递信息,效率低下且信息简单。而随着近代电磁波的发现,人类开始通过无线电来传递信息,效率大大提高。随着上个世纪量子理论的提出,直接催生了电子工业,为当今信息技术的飞速发展打下坚实的基础。大家知道信息的传递和处理是物理过程,其载体主要为电子和光子。第一台电子计算机的问世,是以电子为主要载体的一次信息处
自从富勒烯以及石墨烯被发现以来,自组装纳米材料以及二维材料逐渐进入人们的视野,并在近十几年来引起广泛的研究。不同于三维晶体材料,低维材料往往表现出不同于体相的新奇性质。在未来的纳米器件、自旋电子学、催化等领域有着广阔的应用前景。随着工业技术的发展,人们对纳米尺度的器件需求变得越来越高,因此寻找稳定并具有优良特性的自组装团簇,变得越来越重要。此外,人们对于新型的二维材料的探索也在如火如荼的进行。近年
超新星遗迹作为宇宙中高速激波所形成的扩展源,对于研究高能物理过程以及星际介质弥散气体的性质和演化都有重要的作用。而超新星遗迹之中的热混合型超新星遗迹是在二十年前人们所确认的新的一种超新星遗迹类型。目前热混合型超新星遗迹形成的物理机制仍有争议,其中的热X射线辐射与超新星遗迹的常规模型所预言的结果相违背。而且近来在很多这类超新星遗迹中发现有过电离(等离子体复合)现象,这与早先的理论预言也是恰好相反的。