论文部分内容阅读
在系统控制问题中,状态估计问题一直都是备受关注的主流研究问题之一。随着互联网技术的飞速发展,使得互联网技术和滤波技术之间的交叉融合逐渐变大。在研究系统状态估计问题的同时,还要考虑系统会随机发生某些网络化现象。所以,提出可以解决具有网络化现象控制系统滤波问题的方法是一个值得讨论的课题。本文基于以前的研究成果,主要讨论具有随机时滞和丢包的非线性网络化控制系统的滤波问题。主要内容分为四个部分。第一部分针对具有丢包补偿和相关噪声的非线性随机系统,基于无损变换的方法,设计无损卡尔曼滤波算法。第二部分针对具有随机时滞和测量丢失的非线性系统,在贝叶斯滤波的框架下,设计粒子滤波算法。第三部分针对具有多传感器的特殊非线性系统,将线性滤波方法和无损变换方法相结合,设计混合卡尔曼滤波器。第四部分以机动目标跟踪系统为背景,设计具有随机非线性函数的混合卡尔曼滤波器,并研究交互多卡尔曼滤波算法。本文的具体研究内容如下:研究具有随机丢包补偿的非线性离散系统的无损卡尔曼滤波算法问题。我们利用一个满足伯努利分布的随机变量来描述系统随机发生数据包丢失的情况。这里,我们采用一步预测的值作为补偿器去代替0输入对系统状态进行估计,并且在算法中我们选取两个sigma点集来近似计算递推的无损卡尔曼滤波的参数,提高滤波算法的精准度。在系统估计误差最小的原则下,基于无损变换的方法,设计递推无损卡尔曼滤波器;其次,我们考虑具有相关噪声和测量丢失的非线性离散系统的无损卡尔曼滤波问题。应用射影理论和无损变换的方法,先构造出一步预测器,来降低系统相关噪声对滤波算法精度的影响。基于一步预测器,设计具有相关噪声和测量丢失的递推无损卡尔曼滤波器。研究具有随机时滞和测量丢失的非线性离散系统的粒子滤波算法问题。我们需要引入多个服从伯努利分布的随机变量来刻画系统随机发生多步时滞和测量丢失的现象,由于随机变量的个数过多,不便于分析比较不同的时滞率和丢失率对滤波器估计性能的影响。所以,为了方便对比,我们先以发生一步随机时滞和测量丢失的非线性系统为例进行研究。在系统模型中,引入两个满足伯努利分布的随机变量来刻画系统传感器随机发生时滞和测量丢失的现象。假设系统满足一阶马尔科夫过程,在贝叶斯滤波的框架下,给出采样重要性权重的递推计算公式,降低随机时滞和测量丢失对系统滤波器性能的影响,提高滤波算法对系统状态估计的精准度和有效性。在数值算例中,将我们所设计的滤波算法与传统粒子滤波算法进行比较,并分析不同的时滞率和测量丢失率对系统估计器性能的影响。再考虑具有多步随机时滞和测量丢失的非线性系统,给出相应的粒子重要性权重递推计算公式。通过算例验证我们所设计多步时滞滤波算法的准确度。研究具有多传感器的非线性离散系统的混合卡尔曼滤波算法。首先,引入一个对角矩阵来描述系统发生多重随机测量丢失的现象。其中,对角阵中的每个元素均是满足伯努利分布的随机变量。我们将线性滤波的推导方法(递推射影公式)和无损变换方法相结合,设计一个新的混合卡尔曼滤波器,解决具有非线性随机函数的非线性系统的状态估计问题。我们所设计的混合滤波算法,不但降低多个传感器随机发生测量丢失对滤波器估计性能的影响,同时还能更加准确的对非线性系统的状态进行估计。其次,又考虑具有乘性噪声的非线性离散系统的一致混合卡尔曼滤波问题。在系统模型中,利用零均值、单位方差的随机变量来刻画系统的乘性噪声。先利用递推射影公式和无损变换的方法,设计出具有乘性噪声的混合卡尔曼滤波。基于信息一致化的方法,设计出信息一致化的混合卡尔曼滤波。通过算例仿真,我们看出,利用一致化算法,可以将多个传感器的状态估计效果一致化,提高每个滤波器的工作效率。以机动目标跟踪系统为背景,研究具有随机非线性函数和丢包补偿的非线性系统的混合卡尔曼滤波算法。首先,介绍系统模型的建立过程。在机动目标跟踪系统模型的基础上,考虑到系统受到不确定因素的干扰,用随机非线性函数来刻画某些不确定的扰动。利用之前的理论研究基础,设计出相应的递推混合卡尔曼滤波器,并应用到机动目标跟踪系统中;其次,考虑交互多卡尔曼滤波算法。在实际的应用系统中,用一个系统模型没办法准确刻画出目标的运动状态,所以我们引入交互多卡尔曼滤波算法。针对上述机动目标跟踪系统,利用交互多卡尔曼滤波算法,估计目标的位置信息。通过算例仿真验证我们所设计滤波算法的精准性和有效性。