高光谱图像的自然颜色可视化技术

来源 :浙江大学 | 被引量 : 0次 | 上传用户:alpine
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
光谱图像是一种通过捕获数个频率范围的电磁波进行成像得到的图像。光谱图像除仅有一个波段的单色图像外,还有包含三个到数十个波段、光谱分辨率较低的多光谱图像,与光谱分辨率在10nm范围内、常有数十至数百个波段的高光谱图像,这种含有丰富光谱信息的图像在科学研究种具有重要的作用。然而,由于超越可见光波长范围的波段无法被人类直接观察、且大量的波段数据本身也加重了计算负担,光谱图像的可视化与降维融合成为了十分重要的课题。其中,高光谱图像光谱分辨率较高、波段信息较丰富,针对如此丰富的信息进行可视化也属于较难的问题,是亟待提升的研究领域之一。高光谱图像的可视化应尽可能保留原图像中的信息,并使得显示形式易于解读分析,但是目前已有的方法常具有颜色不自然、不能处理非线性关系、需要对照RGB图片、难以重用等问题。在本文中,提出了两种高光谱图像可视化算法,包括:(1)一种基于移动最小二乘法(Moving Least Squares)的,非线性的、适用于多种场景的,并能以自然颜色显示的方法。该方法是一种在线优化的算法,通过为每个光谱像素求解一个单独的变换,将高光谱图像映射为可视化的自然颜色图像。(2)一种基于对抗生成网络(Generative Adversarial Network)的端到端的(End-to-end),无监督的,非线性的可视化方法,该方法利用一种利于结构保留的新型架构,配合对抗学习约束与还原一致性约束,以数据驱动的方式学习一个能保留高光谱图像信息、并以自然颜色显示的可视化网络。实验从直观对比、客观量化两个角度验证了两种方法都能够较好地可视化高光谱图像,并能使可视化结果具有自然的颜色。
其他文献
Detection, identification and intelligence are the blistering topics and requirements nowadays in modern era. As artificial intelligence is going to seizure the whole world soon, most of the explorati
学位
汉字是世界上使用最多的文字,汉字识别在残疾人无障碍阅读、文献自动录入、邮件分拣、银行票据处理、证件识别等领域有着重要的应用价值。汉字数量巨大,手写风格各异,并且汉字中存在大量的形近字,导致脱机手写汉字识别一直存在准确率偏低的问题。近年来,深度学习发展迅速,在模式识别、自然语言处理、语音识别等领域都取得了不错的成绩。因此,本文采用深度学习的方法对脱机手写汉字识别进行研究。针对汉字识别大分类问题,采用
图像超分辨率技术是近年来计算机视觉领域的研究热点之一,其可以有效地弥补硬件成像设备精度的不足,以较高的还原度呈现出真实场景。图像超分辨率技术在安防、遥感、医学和高清显示等领域有着广泛的应用场景和需求。本文围绕提高图像超分辨率性能展开研究,并在基于学习的超分辨率方法上从提升学习字典训练效率和提高图像重建质量两个方面进行改进。本文首先针对传统字典训练效率低的问题,提出一种新的图像块相似性判断方法及结构
学位
随着我国新消费时代的到来,消费模式开启了新格局,品质消费备受追捧。受到新消费热潮的影响,生鲜企业也在不断转型升级,生鲜超市等新兴生鲜消费渠道逐渐增长。由于生鲜供应链具有配送成本高、仓储难度大、产品损耗率高等特点,大部分涉足生鲜的企业都处于亏损状态。如何控制供应链成本,对生鲜供应链的选址、库存和路径进行集成优化是尤为重要的。本文正是基于此背景,在研究以超市为代表的现代生鲜供应链体系基础上,综合直送模
学位
聚合博弈是成本仅依赖于其自身策略和关于所有个体的聚合策略的一类重要博弈.其在自然科学、经济学和工程科学等领域中广泛应用.特别的,在工程科学中,无线通信、交通系统、智能电网等方向的聚合博弈问题得到了越来越多富有成效的研究.博弈理论的关键是纳什均衡问题的研究.因此,求解纳什均衡的算法受到了广泛关注.近年来,随着大规模通信网络和分布式技术的发展,很多研究学者致力于分布式纳什均衡算法的研究.相比于传统的集
学位
观察数据中发现变量之间的因果关系,解释事件是如何发生以及预测其未来发展趋势,几乎在所有学科中都有研究和应用。例如医学、生物学、经济学、物理学、社会科学等领域均把因果关系作为解释、预测和决策的基础。信息科学领域,可以使用贝叶斯网络中的马尔科夫毯(边)来表示真实世界中的因果关系。近年来,有学者采用基于回归正则化模型马尔科夫边的发现方法从观测数据中研究事件之间的因果相关性,并从理论上揭示了基于回归正则化
在单机数据上训练的深度学习机制,受限于数据量和算力容易出现过拟合以及较低的可用性等问题。为了解决这个问题,采用中心化的训练架构,聚合多个参与方的数据来训练一个全局模型是普遍采用的模式。或者采用分布式的训练模式,基于中心化服务器聚合各个参与方的模型梯度更新,但这两种中心化的架构始终存在单点故障的可能。此外,当前深度学习系统对于数据隐私和模型隐私的关注不够,限制了深度学习在诸如医疗、金融等敏感数据上的
学位
图被广泛地应用于各个领域中,例如交通路网、电子通信网络、社交网络、生物信息网络以及协作网络等。图结构中,边表示顶点之间的关系。图上有许多特制的算法,图查询研究一直受到学术界与工业界的广泛关注。随着信息化时代的到来,各种信息以爆炸模式增长,导致图的规模日益增大。如此大规模的数据量,给图查询处理带来了极大的机遇与挑战。  目前已有的大量图查询算法大多是集中式算法,但随着图数据的指数型增长,传统的索引与
学位
随着计算机处理能力的增强,个人手持设备的普及,将三维城市模型服务推广到普通用户中在技术上变得逐渐可行,人们对基于三维城市模型信息服务的需求也越发旺盛。在游戏及VR等应用场景中,为了提升玩家用户的沉浸感,常常需要将指定的城市模型接入到应用中。因此,在保持原始扫描获得数据的语义信息和视觉效果下,应尽量提高其存储和处理效率。所以需要对原始数据进行一定的预处理,在提取其语义信息后对模型进行适当的简化。  
电网中的异常检测指电网在未受到攻击的情况下,由于个别或部分元件发生故障,导致网内其他设备表现出偏离平衡状态的情况。严重的电网异常容易引发大规模停电事故,从而造成巨大的经济损失。因此,分析人员需要快速、准确的检测电网异常,以此为基础做进一步的故障原因诊断、影响分析,并采取对应的修复措施。已有的电网异常检测工作多基于聚类、分类等自动化方法,然而随着检测准确率的不断提高,误报与漏报率仍居高不下。传统的漏
学位