【摘 要】
:
目标追踪作为现实意义较大的一个视觉算法研究板块,其中长时间的单目标追踪算法则是该板块一个十分重要方向,此前相关算法的解决方式主要以传统滤波为主,近年来,以深度学习为基础的长时间单目标追踪算法性能,正渐渐赶超传统滤波方法,尽管如此,目标追踪任务的难点始终没有得到很好的解决,其中以相似目标的追踪漂移、目标闪入和闪出视野内、目标运动模糊、目标视角和尺度随着追踪时间的不断变化等难点最为突出,进一步地,长时
【基金项目】
:
国家自然科学基金杰出青年基金项目(No.61625204); 四川省重点研发项目(No.2020YFG0741); 四川省重点研发项目(No.2020YFG0329);
论文部分内容阅读
目标追踪作为现实意义较大的一个视觉算法研究板块,其中长时间的单目标追踪算法则是该板块一个十分重要方向,此前相关算法的解决方式主要以传统滤波为主,近年来,以深度学习为基础的长时间单目标追踪算法性能,正渐渐赶超传统滤波方法,尽管如此,目标追踪任务的难点始终没有得到很好的解决,其中以相似目标的追踪漂移、目标闪入和闪出视野内、目标运动模糊、目标视角和尺度随着追踪时间的不断变化等难点最为突出,进一步地,长时追踪任务要求少则数小时,多则数天的持续追踪状态,加剧了上述问题的复杂性,使长时间单目标追踪算法的研究难度一直保持高位。本文提出一种基于深度学习的长时间单目标追踪算法框架,并更加清晰地定义长时间单目标追踪任务中各个阶段遇到的问题,从算法逻辑上以流程化的思想优化、改进对应方案,从算法设计上以模块化的方案缓解、解决对应问题,从而让算法逻辑和设计服务于任务本身。本算法框架致力于提出一种解决长时间单目标追踪问题的不同思路,并在一定程度上给出较为完整的解决方案。本文的工作主要有以下几点:(1)提出一种全新的,适用于长时间单目标追踪任务的算法框架,从任务逻辑上进行流程化的算法设计,更清晰的定义任务中的关键时刻,并解决对应的问题,让研究长时间单目标追踪任务有了一个较为统一的视角。(2)提出一个全新的,适用于追踪任务的验证网络,用以独立判定待选追踪目标,从而实现对待选目标更加严格的筛选,将算法框架中各个模块的识别质量进行统一,并在判别精度和处理速度两方面都做到最优,对整体算法框架的性能有着较大的提升。(3)优化核心短时间单目标追踪算法,在不降低处理速度的前提下,大幅提高追踪精度。(4)本算法在ECCV主办比赛VOT2020的长时间追踪赛道中,以F1-Score、Recall、Accuracy分别得分0.6872、0.651、0.733位列第二名,并且速度是第一名的7倍。
其他文献
随着智能监控领域朝全天候化、多场景化的方向发展,在可见光摄像头已有一定部署基础的前提下,红外摄像头也正在被广泛应用。基于可见光与红外图像的跨模态行人重识别受到了越来越多的关注。一方面,通过行人检测得到准确的检测边界框图像作为输入,是行人重识别在实际应用中表现良好的重要基础,然而目前大部分行人检测研究集中于可见光图像而忽略了红外图像。由于不同模态图像本身存在的差异,将可见光行人检测成果直接迁移至红外
图像语义分割是指根据图像中像素的语义信息对图像进行分类分割的方法,是计算机视觉领域的一项重要任务。基于深度学习的图像语义分割网络近年来得到快速发展,但仍存在参数量以及计算量大,模型较为复杂,以及不能很好地处理图像中的小目标物体,模型分割精度很难提升等问题。本文针对当前的语义分割网络参数量和计算量大以及小目标物体的语义分割问题展开研究,主要工作和创新点如下:1、针对网络参数量以及计算量大的问题,提出
预测性维护(Predictive Maintenance,Pd M)技术在航空航天、轨道交通、机械装备等领域应用广泛,是实现工业现代化的关键技术之一。在“中国制造2025”和“工业4.0”的战略背景下,工业设备正日趋复杂化,工作环境也日渐恶劣。Pd M技术依据设备或系统的传感器监测数据,对其剩余使用寿命(Remaining Useful Life,RUL)进行预测,从而提前采取维护措施,保障运行安
人脸识别是人工智能技术研究中的热点之一,以其突出的高并发性、非触碰性等特点,在安防、监控、移动支付等工业生产领域已有广泛的应用。自AlexNet在2012ILSVRC目标识别领域取得突破性进展,各种新颖的卷积神经网络结构不断涌现。受三维人脸数据集等因素限制,三维人脸识别技术的发展相对较晚,但是随着二维人脸识别技术的发展面临如人脸表情、姿态、遮挡以及光照变化等因素的挑战,研究者逐步转向三维人脸识别的
磁共振成像(Magnetic Resonance Imaging,MRI)技术因其非侵入性、非电离的成像方式,已经广泛地应用在物理、生物、医学等领域,尤其在病灶诊断方面的前景广阔。然而,由于磁共振独特的成像机制,磁共振扫描时间过长,容易产生运动伪影,从而影响重建质量和临床诊断。因此,减少磁共振成像时间具有重要的研究意义。目前深度学习技术与日俱进,在图像重建领域表现突出,因此基于深度学习的快速磁共振
生成对抗网络(Generative Adversarial Networks,GAN)是加拿大蒙特利尔大学的Ian Goodfellow等人在2014年提出的机器学习架构。自提出以来,便受到了深度学习领域研究人员的广泛研究,该架构在图像生成领域取得了巨大的成就。尽管图像生成模型取得了巨大的进步,但其仍然存在生成图像多样性不足、生成的高分辨率图像质量差、模型优化需要大量训练数据等问题。大量的研究人员
自动导引运输车(Automated Guided Vehicle,AGV)是一种移动轮式机器人,属于智能运输设备。AGV是目前无人工厂中的重要组成部分,可以取代人工完成搬运任务。随着制造业的发展和人工成本的提高,自动化流水线也需要相应的AGV调度系统来满足日益增长的任务需求。AGV可以实现物料的高效运输,降低生产成本,因此多AGV系统正在逐步推广。基于以上背景,提出对多AGV路径规划、任务调度和任
掌握自然语言是人类区别其他生物的独特智慧特征,古往今来人们从未停止过对其的研究,近年来GPT-2以及Bert等大规模预训练模型的横空出世,给予了自然语言生成领域内的研究空前的热度。自然语言的生成是有限制的,不同的文体抑或是在不同的语境下都有其独特的约束,于是受限文本生成也成了业内的一个必然要求。深度学习方法往往需要大量的相关数据,然而数据的整理是很繁琐的,并且小的数据量根本不足以使得神经网络拟合。
阿尔茨海默症(AD)的神经影像学自动诊断近年来引起大量关注,但至今尚未有较好的技术手段准确地诊断识别出相关疾病,由于图像识别技术的发展与突破,阿尔茨海默症图像诊断技术面临以下几个问题:(1)传统医学图像诊断技术需要人为提取图像特征,再使用机器学习分类算法,具有较强主观性;(2)AD患者脑部影像具有三维空间的特征,传统二维图像识别算法无法较好提取到大脑中的病理特征。本文针对以上问题,本研究由图像特征
随着无人机技术的不断进步,多无人机协同对地任务规划在现代战争中的地位日益凸显,其规划结果优劣将直接影响无人机整体作战效能。多无人机协同对地任务规划包含两阶段:第一阶段任务分配,即给无人机合理的指派任务;第二阶段航迹规划,即给无人机规划出能安全抵达对地任务目标点的可飞航迹。本文结合某无人机仿真平台的研究,对相关问题展开研究,主要工作内容如下:(1)针对传统合同网算法在解决多无人机任务分配中存在的资源